1樓:肖展
數量級就是abcos,是一個實數
向量積是absin,表示一個向量,並且這個向量與a,b組成的平面是垂直的。
2樓:匿名使用者
這兩個都是對向量來的!數量
積結源果是一個數量,向量積的結果還是一個向量 符號 大小 方向
數量積: . 模長之積*cos(夾角) 無
向量積: × 模長之積*sin(夾角) 右手定則
右手定則:a×b 的方向為:
右手大拇指指向a,食指指向b,中指與大拇指和食指所在平面相垂直中指方向為向量積方向
3樓:匿名使用者
數量積是向量與向量的乘積,是點乘,是個數量
向量積是叉乘
數量積和向量積有什麼區別
4樓:學雅思
一、指代不同
1、數量積:是接受在實數r上的兩個向量並返回一個實數值標量的二元運算。它是歐幾里得空間的標準內積。
2、向量積:是一種在向量空間中向量的二元運算。
二、幾何意義不同
1、數量積:在點積運算中,第一個向量投影到第二個向量上(這裡,向量的順序是不重要的,點積運算是可交換的),然後通過除以它們的標量長度來「標準化」。這樣,這個分數一定是小於等於1的,可以簡單地轉化成一個角度值。
2、向量積:叉積的長度|a×b|可以解釋成這兩個叉乘向量a,b共起點時,所構成平行四邊形的面積。據此有:
混合積[abc]=(a×b)·c可以得到以a,b,c為稜的平行六面體的體積。
三、應用不同
1、數量積:平面向量的數量積a·b是一個非常重要的概念,利用它可以很容易地證明平面幾何的許多命題,例如勾股定理、菱形的對角線相互垂直、矩形的對角線相等等。
2、向量積:在物理學光學和計算機圖形學中,叉積被用於求物體光照相關問題。求解光照的核心在於求出物體表面法線,而叉積運算保證了只要已知物體表面的兩個非平行向量(或者不在同一直線的三個點),就可依靠叉積求得法線
5樓:碩穎卿柏胭
向量積的結果是向量,數量積的結果是標量。
向量a×向量b=(absinθ)c°,
c°--是垂直與a.b向量的單位向量。方向符合右手法則。|a×b|=absinθ.(θ---
a,b夾角)
向量a.向量b=abcosθ
(是標量).
6樓:溜達的專用
向量積(矢積)與數量積(標積)的區別
1、在教課中稱呼不同
數量積:標積、內積、數量積、點積
向量積:矢積、外積、向量積、叉積
2、運算式不同
數量積:a×b=c,其中|c|=|a||b|·sinθ,c的方向遵守右手定則
向量積:a·b=|a||b|·cosθ
3、幾何意義不同
數量積:c是垂直a、b所在平面,且以|b|·sinθ為高、|a|為底的平行四邊形的面積
向量積:向量a在向量b方向上的投影與向量b的模的乘積
4、運算結果的不團
數量積:向量(常用於物理)/向量(常用於數學)
向量積:標量(常用於物理)/數量(常用於數學)
擴充套件資料
向量積代數規則
1、反交換律:a×b=-b×a
2、加法的分配律:a×(b+c)=a×b+a×c。
3、與標量乘法相容:(ra)×b=a×(rb)=r(a×b)。
4、不滿足結合律,但滿足雅可比恆等式:a×(b×c)+b×(c×a)+c×(a×b)=0。
5、分配律,線性性和雅可比恆等式別表明:具有向量加法和叉積的r3構成了一個李代數。
6、兩個非零向量a和b平行,當且僅當a×b=0。
7樓:匿名使用者
向量數量積是兩向量的模相乘再乘以兩向量夾角的餘弦值,而向量的向量積是兩模相乘再乘夾角正弦值,此外數量積結果是個標量,向量積結果仍是向量
數學向量中向量積與數量積有什麼區別?適用於什麼?謝謝
8樓:匿名使用者
向量積是所謂的叉乘,數量積是點乘,向量積主要應用於面積計算和法向量計算和某些物理問題,數量積麼,就是老師無聊讓你算著玩的。
9樓:匿名使用者
數量積是沒有方向只有大小的兩個量的積,向量積是兩個既有大小又有方向的兩個量的積
10樓:劉張戴
向量積與向量積的模區別
高數問題,怎麼區分數量積和向量積
11樓:椋露地凜
向量積是所謂的叉乘,數量積是點乘,向量積主要應用於面積計算和法向量計算和某些物理問題。
數量積和向量積有什麼區別向量積與數量積有什麼區別
一 指代不同 1 數量積 是接受在實數r上的兩個向量並返回一個實數值標量的二元運算。它是歐幾里得空間的標準內積。2 向量積 是一種在向量空間中向量的二元運算。二 幾何意義不同 1 數量積 在點積運算中,第一個向量投影到第二個向量上 這裡,向量的順序是不重要的,點積運算是可交換的 然後通過除以它們的標...
數學問題和科學問題,數學問題 謝謝
1 根據三角形邊長定義,兩邊之和大於第三邊,兩邊之差小於第三邊,內 所以 a b c a c b c a b a b c a c b c a b 3c a b 2 聞容 利用的感覺是 嗅 覺和 味 覺 問 利用的感覺是 聽 覺 切 利用的感覺是 觸 覺。3.手指不小心被刀片劃破後感到疼痛,其感受器官...
兩個向量的數量積等於它們對應座標的乘積和請問
1 a b a b cos 涉及長度及夾角,圖形特點比較明顯,注重形 2 a b x1x2 y1y2 只涉及向量的座標 也就是數 不用考慮向量的長度 方向,注重數.向量數量積公式是什麼 已知兩個非零向量a b,那麼 a b cos 是a與b的夾角 叫做a與b的數量積或內積。記作a b。兩個向量的數量...