二進位制怎麼轉化成十進位制二進位制數如何轉換成十進位制數?

2021-03-07 02:04:07 字數 5269 閱讀 1490

1樓:center丿

06如何快速的將二進位制轉換成十進位制

2樓:匿名使用者

從最低位(最右)算起,位上的數字乘以本位的權重,權重就是2的第幾位的位數減一次方。比如第2位就是2的(2-1次)方,就是2;第8位就是2的(8-1)次方是128。把所有的值加起來。

2(1-1)代表2的0次方,就是1;其他類推

比如二進位制1101,換算成十進位制就是:1*2(1-1)+0*2(2-1)+1*2(3-1)+1*2(4-1)=1+0+4+8=13

3樓:啦啦啦啦崔小淨

口訣:整數二進位制用數值乘以2的冪次依次相加,小數二進位制用數值乘以2的負冪次然後依次相加。

1、整數二進位制轉換為十進位制:首先將二進位制數補齊位數,首位如果是0就代表是正整數,如果首位是1則代表是負整數。

若二進位制補足位數後首位為1時,如下圖所示,就需要先取反再換算:

2、小數的二進位制轉換為十進位制:將二進位制中的四位小數分別於下邊(如下圖所示)對應的值相乘後相加得到的值即為換算後的十進位制。

4樓:zyp710810嘟

二進位制怎麼轉化成十進位制轉換的方法是:

把各個為拆開。乘以2的次冪。末尾位乘2的0次冪。依次類推。

比如:10010111

十進位制=1*2^7+0*2^6+0*2^5+1*2^4+0*2^3+1*2^2+1*2+1*2^0 ;

ps:末尾位是2的零次冪,所以是1。

二進位制是計算技術中廣泛採用的一種數制。二進位制資料是用0和1兩個數碼來表示的數。它的基數為2,進位規則是「逢二進一」,借位規則是「借一當二」,由18世紀德國數理哲學大師萊布尼茲發現。

當前的計算機系統使用的基本上是二進位制系統,資料在計算機中主要是以補碼的形式儲存的。計算機中的二進位制則是一個非常微小的開關,用「開」來表示1,「關」來表示0。

20世紀被稱作第三次科技革命的重要標誌之一的計算機的發明與應用,因為數字計算機只能識別和處理由『0』.『1』符號串組成的**。其運算模式正是二進位制。

19世紀愛爾蘭邏輯學家喬治布林對邏輯命題的思考過程轉化為對符號"0''.''1''的某種代數演算,二進位制是逢2進位的進位制。0、1是基本算符。

因為它只使用0、1兩個數字符號,非常簡單方便,易於用電子方式實現。

二進位制與十進位制的區別在於數碼的個數和進位規律有很大的區別,顧名思義,二進位制的計數規律為逢二進一,是以2為基數的計數體制。10這個數在二進位制和十進位制中所表示的意義完全不同,在十進位制中就是我們通常所說的十,在二進位制中,其中的一個意義可能是表示一個大小等價於十進位制數2的數值。

仿照例題1.3.1,我們可以將二進位制數10表示為:10=1×2^1+0×2^0

十進位制與二進位制的關係

一般地,任意二進位制數可表示為:

例題 1.3.2 試將二進位制數(01010110)b轉換為十進位制數。

解:將每一位二進位制數乘以位權後相加便得相應的十進位制數

在數位電子技術和計算機應用中,二值資料常用數字波形來表示。使用數字波形可以使得資料比較直觀,也便於使用電子示波器進行監視。圖1.3.3表示一計數器的波形。

圖1.3.3 用二進位制數表示0~15波形圖

圖中給出了四個二進位制波形。看這種二進位制波形圖時,我們應當沿著圖中虛線所示的方向來看,即使圖中沒有標出虛線(一般都沒有標出),也要想象出虛線來。其中在每一個波形上方的數字表示了與波形對應的位的數值,最後一行則是相應的十進位制數 ,其中lsb是英文least significant bit的縮寫,表示最低位,msb是most significant bit的縮寫,表示二進位制數的最高位。

顯然,這是一組4位的二進位制數,總共有16組,最左邊的二進位制數為0000,最上邊的波形代表二進位制數的最低位,也就是通常在十進位制數中我們所說的個位數,最下面的是最高位。圖中最右邊的二進位制數為1111,對應的十進位制數為15。再來看看對應於十進位制數5的二進位制數是多少呢?

是0101,對了,讀數的順序是從下往上。

二進位制數在數字系統(比如計算機之間)中的傳輸的方式分為序列和並行兩種。

其中序列傳輸時二進位制數是按照逐位傳遞的方式進行傳輸,根據實際情況可以從最高位或最低位開始傳輸,一般情況下是從最高位開始傳輸的。只需要一根資料線。如圖1.

3.4所示,要完成八位二進位制數的傳輸,需要經歷八個時鐘週期。

圖1.3.4 二進位制資料的序列傳輸

(a) 兩臺計算機之間的序列通訊 (b) 二進位制資料的序列表示

典型的例子是調變解調器與計算機之間的通訊就是通過序列傳輸來完成的。

並行傳輸的效率要高於序列傳輸,一次可以傳輸完整的一組二進位制數。但是根據所要傳輸的二進位制數的位數的多少,需要備足足夠多的資料線。一般來說,常見的並行傳輸採用的資料線有8、16、32等,再多就很少見了。

典型的並行傳輸例子是印表機與計算機之間的通訊傳輸,見圖1.3.5。

圖1.3.5 並行傳輸資料的示意圖

(a) 計算機與印表機之間的並行通訊 (b) 二進位制資料的並行表示

圖1.3.5顯示了採用並行傳輸模式,只需要一個時鐘週期,即可完成八位二進位制數的傳輸。

5樓:1絲冷風

上面的都是基本換算的方法,結果雖然正確,但換算很慢,不能口算出結果(因為要記權、乘、加很多次)。最快捷的辦法,就是先把二進位制換成十六進位制,再計算得十進位制數(255以內可以做到口算)。例:

10111001=b9=16*11+9=185

6樓:傷a痕

二進位制: 11 0010 0111 0001.011

轉換成十進位制:=2^13+2^12+2^9+2^6+2^5+2^4+2^0+2^(-2)+2^(-3)

7樓:友萍華虹

0.110011001100……1100……

十進位制數轉換為二進位制數的方法:整數部分採用除2取餘法、小數部分採用乘2取整法分別轉換後組合得到。除2取餘法:

逐次除以2,每次求得的餘數即為二進位制數整數部分各位的數碼,直到商為0;乘2取整法:逐次乘以2,每次乘積的整數部分即為二進位制數小數各位的數碼。

8樓:藍巍智初晴

左起的第三位數值1,等於十進位制數的2,1011是十進位制的11。

二進位制轉十進位制:

要從右到左用二進位制的每個數去乘以2的相應次方(次方要從0開始算起)例如:二進位制數1101轉化成十進位制

1101(2)=1*20+0*21+1*22+1*23=1+0+4+8=13

或者用下面這種方法:

把二進位制數首先寫成加權係數式,然後按十進位制加法規則求和。這種做法稱為"按權相加"法。

2的0次方是1(任何數的0次方都是1,0的0次方無意義)2的1次方是2

2的2次方是4

2的3次方是8

2的4次方是16

2的5次方是32

2的6次方是64

2的7次方是128

2的8次方是256

2的9次方是512

2的10次方是1024

2的11次方是2048

2的12次方是4096

2的13次方是8192

2的14次方是16384

2的15次方是32768

2的16次方是65536

2的17次方是131072

2的18次方是262144

2的19次方是524288

2的20次方是1048576

即:……1024

512256

12864

321684

21……

此時,1101=8+4+0+1=13

再比如:二進位制數1000110轉成十進位制數可以看作這樣:

數字中共有三個1

即第二位一個,第三位一個,第七位一個,然後對應十進位制數即2的1次方+2的2次方+2的6次方,

即1000110=64+0+0+0+4+2+0=70

9樓:南追

先了解熟悉的十進位制轉二進位制:要用這種方法首先得會十進位制轉

二級制的除以2取餘的方法。十進位制轉二進位制:將餘數和最後的1從下向上倒序寫,就是結果。

例如:302

302÷2=151餘0

151÷2=75餘1

75÷2=37餘1

37÷2=18餘1

18÷2=9餘0

9÷2=4餘1

4÷2=2餘0

2÷2=1餘0

1÷2=0餘1

故二進位制為從下往上寫 100101110。

小數點前要從右到左用二進位制的每個數去乘以2的相應次方,小數點後則是從左往右。

再聯想到 二進位制轉十進位制

從右邊第一個數數起,第一位是乘以10的0次方, 第二位乘以10的1次方, 以此類推。

例如100101110

二進位制數如何轉換成十進位制數?

10樓:會飛的小兔子

二進位制數轉換成十進位制數的方法如下:

1、正整數轉成二進位制,除二取餘,然後倒序排列,高位補零。將正的十進位制數除以二,得到的商再除以二,依次類推知道商為零或一時為止,然後在旁邊標出各步的餘數,最後倒著寫出來,高位補零就可以。

2、42除以2得到的餘數分別為010101,然後倒著排一下,42所對應二進位制就是101010。

3、計算機內部表示數的位元組單位是定長的,如8位,16位,或32位。所以,位數不夠時,高位補零,所說,如圖3所示,42轉換成二進位制以後就是。00101010,也即規範的寫法為(42)10=(00101010)2。

4、負整數轉換成二進位制方法:先是將對應的正整數轉換成二進位制後,對二進位制取反,然後對結果再加一。還以42為例,負整數就是-42,如圖4所示為方法解釋。

最後即為:(-42)10=(11010110)2。

5、小數轉換為二進位制的方法:對小數點以後的數乘以2,取結果的整數部分(不是1就是0嘍),然後再用小數部分再乘以2,再取結果的整數部分……以此類推,直到小數部分為0或者位數已經夠了。然後把取的整數部分按先後次序排列,就構成了二進位制小數部分的序列。

6、 如果小數的整數部分有大於0的整數時該如何轉換呢?如以上整數轉換成二進位制,小數轉換成二進位制,然後加在一起。

7、整數二進位制轉換為十進位制:首先將二進位制數補齊位數,首位如果是0就代表是正整數,如果首位是1則代表是負整數。先看首位是0的正整數,補齊位數以後,將二進位制中的位數分別將下邊對應的值相乘,然後相加得到的就為十進位制,比如1010轉換為十進位制。

8、若二進位制補足位數後首位為1時,就需要先取反再換算:例如,11101011,首位為1,那麼就先取反吧:-00010100,然後算一下10100對應的十進位制為20,所以對應的十進位制為-20。

9、將有小數的二進位制轉換為十進位制時:例如0.1101轉換為十進位制的方法:

將二進位制中的四位數分別於下邊對應的值相乘後相加得到的值即為換算後的十進位制,這樣二進位制數轉換成十進位制數的問題就解決了。

87十進位制轉化成二進位制原碼反碼,十進位制數47與負47轉化為二進位制數後的原碼 反碼 補碼各為多少?

轉換結果 47的原碼 0010 1111 47的反碼 0010 1111 47的補碼 0010 1111 47的原碼 1010 1111 47的反碼 1101 0000 47的補碼 1101 0001 轉換方法 1 原碼就是符號位加上真值的絕對值,即用第一位表示符號,其餘位表示值.比如如果是8位二進...

十進位制轉化成二進位制中,湊位權的方法,有無10,如何理解

1 對於 bai多位數,處在某一位上的 du1 所表示的數值的zhi大dao 小,稱為該位的位權。例 版如十進位制第 權2位的位權為10,第3位的位權為100 而二進位制第2位的位權為2,第3位的位權為4,對於 n進位制數,整數部分第 i位的位權為n i 1 而小數部分第j位的位權為n j。數碼所表...

關於十進位制與二進位制,什麼是二進位制和十進位制 關於二進位制和十進位制

是。十進位制是滿十進一,二進位制是滿二進一。如8十進位制就是4,二進位制就是100。二進位制轉化十進位制 設一個二進位制數的百位上的數是a,十位是b,個位是c,則十進位制的數為 a 2 2 b 2 1 c 2 0 如上例,a 1,b 0,c 1 如果有千位的話,就用千位上的數乘以二的三次方加上百位上的數乘以二的平方...