1樓:風雨答人
有24塊巧克力,平均分成三份,其中的兩份是這些巧克力的三分之二,它的分數單位是三分之一。
2樓:說不出成果
把這些巧克力平均分成三份,其中的兩份是這些巧克力的2/3。
它的分數單位是1/3。
3樓:fancy陳哈
有24塊巧克力,平均分成三份,其中的兩份是這些巧克力的2/3,它的分數單位1/3。
兩份對應著:1÷3×2=2/3,
2/3的分數單位為1/3。
分數單位看分數的分母,例如a/b的分數單位對應為1/b。
4樓:匿名使用者
有20塊巧克力,平均分成三分,其中1/2巧克力的24分之3=1/8
5樓:揚波集團
24÷3=8
2×8÷24=2/3 單位1/3
6樓:邊然
其中的兩份是這些巧克力的2/3,它的分數單位是1/3。
cosx的平方的不定積分怎麼求
7樓:愛**米
∫cos²xdx
=∫½[1+cos(2x)]dx
=∫½dx+∫½cos(2x)dx
=∫½dx+¼∫cos(2x)d(2x)
=½x+¼sin(2x) +c
解題思路:
先運用二倍角公式進行化簡。
cos(2x)=2cos²x-1
則cos²x=½[1+cos(2x)]
擴充套件資料:同角三角函式的基本關係式
倒數關係:tanα ·cotα=1、sinα ·cscα=1、cosα ·secα=1;
商的關係: sinα/cosα=tanα=secα/cscα、cosα/sinα=cotα=cscα/secα;
和的關係:sin2α+cos2α=1、1+tan2α=sec2α、1+cot2α=csc2α;
平方關係:sin²α+cos²α=1。
8樓:藍藍路
解∫ (cosx)^2dx
=(1/2)*∫ 1+cos2xdx
=(1/2)∫ dx+(1/4)∫ cos2xd2x=x/2+1/4*sin2x+c
9樓:夙幾君未涼
把cosx的平方換為二倍角公式即可,望採納
10樓:匿名使用者
一、可以使用倍角公式化簡:
倍角公式
二、還可以使用分步積分法!
分佈積分法
11樓:匿名使用者
我覺得這個問題應該找專業人士回答,因為他應該是一個數學問題,嗯,進來高中的數學老師就能夠回答。
12樓:逝水流年不復卿
∫ cos²x dx :
利用回cos²x = (1 + cos2x) / 2 和 ∫答 cos2x dx =sin(2x) / 2
∫ cos²x dx = ∫ (1 + cos2x) / 2 dx = x/2 + 1/2∫ cos2x dx = x/2 + 1/4∫ dsin2x = x/2 + sin2x/4 + c
13樓:我還會在想你的
1/3(sinx)3
不定積分的含義
14樓:匿名使用者
就是求導函式是f(x)的函式
15樓:qq1292335420我
性質1:設a與b均為常數,則f(a->b)[a*f(x)+b*g(x)]dx=a*f(a->b)f(x)dx+b*f(a->b)g(x)dx
性質2:設ab)f(x)dx=f(a->c)f(x)dx+f(c->b)f(x)dx
性質3:如果在區間【a,b】上f(x)恆等於1,那麼f(a->b)1dx=f(a->b)dx=b-a
性質4:如果在區間【a,b】上f(x)>=0,那麼f(a->b)f(x)dx>=0(ab)f(x)dx<=m(b-a) (ab)f(x)dx=f(c)(b-a) (a<=c<=b)成立。
16樓:你的眼神唯美
不定積分結果不唯一求導驗證應該能夠提高湊微分的計算能力。
那就用數字帝國,唉
不定積分?
17樓:天使的星辰
8、c原式=∫[1/x²-1/(x²+1)]dx=-1/x-arctanx+c
9、a可以從平面推廣到三維
經過點(2,3)且平行於y軸的是x=2
因此推廣到 平面是也是x=2
不定積分問題? 10
18樓:心飛翔
在微積分中,一個函式f 的不定積分,或原函式,或反導數,是一個導數等回
於f 的函式 f ,即f ′答 = f。不定積分和定積分間的關係由微積分基本定理確定。其中f是f的不定積分。
根據牛頓——萊布尼茲公式,許多函式的定積分的計算就可以簡便地通過求不定積分來進行。現實應用主要在工程領域,算水壓力、結構應力等都要用不定積分,應為很多受力情況不是單純的,是在不斷變化的,這個就只有用不定積分積分,再用定積分計算 .
常用不定積分公式?
19樓:文子
在微積分中,一個函式f 的不定積分,或原函式,或反導數,是一個導數等於f 的函式 f ,即f ′ = f。不定積分和定積分間的關係由微積分基本定理確定,其中f是f的不定積分。
根據牛頓-萊布尼茨公式,許多函式的定積分的計算就可以簡便地通過求不定積分來進行。這裡要注意不定積分與定積分之間的關係:定積分是一個數,而不定積分是一個表示式,它們僅僅是數學上有一個計拿搏算關係。
一個函式,可以存在不定積分,而不存在定積分,也可以存在定積分,而沒有不定積分。連續函式,一定存在定積分和不定積分。
20樓:鞠翠花潮戌
1)∫0dx=c
2)∫x^udx=(x^(u+1))/(u+1)+c
3)∫1/xdx=ln|x|+c
4)∫a^xdx=(a^x)/lna+c
5)∫e^xdx=e^x+c
6)∫sinxdx=-cosx+c
7)∫cosxdx=sinx+c
8)∫1/(cosx)^2dx=tanx+c
9)∫1/(sinx)^2dx=-cotx+c
10)∫1/√(1-x^2)
dx=arcsinx+c
11)∫1/(1+x^2)dx=arctanx+c
12)∫1/(a^2-x^2)dx=(1/2a)ln|(a+x)/(a-x)|+c
擴充套件資料:
積分的一個嚴格的數學定義由波恩哈德·黎曼給出(參見條目「黎曼積分」)。黎曼的定義運用了極限的概念,把曲邊梯形設想為一系列矩形組合的極限。從十九世紀起,更高階的積分定義逐漸出現,有了對各種積分域上的各種型別的函式的積分。
比如說,路徑積分是多元函式的積念慧分,積分的區間不再是一條線段(區間[a,b]),而是一條平面上或空間中的曲線段;在面積積分中,曲線被三維空間中的一個敬枝曲面代替。對微分形式的積分是微分幾何中的基本概念。
求不定積分的方法:
第一類換元其實就是一種拼湊,利用f'(x)dx=df(x);而前面的剩下的正好是關於f(x)的函式,再把f(x)看為一個整體,求出最終的結果。亮高敏(用換元法說,就是把f(x)換為t,再換回來)
分部積分,就那固定的幾種型別,無非就是三角函式乘上x,或者指數函式、對數函式乘上一個x這類的,記憶方法是把其中一部分利用上面提到的f『(x)dx=df(x)變形,再用∫xdf(x)=f(x)x-∫f(x)dx這樣的公式,當然x可以換成其他g(x)
21樓:鄒桂枝殳巳
∫secx=ln|secx+tanx|+c推導:左邊=∫dx/正大cosx=∫cosxdx/(cosx)^2=∫d(sinx)/[1-(sinx)^2]令t=sinx,
=∫dt/(1-t^2)
=(1/2)∫dt/(1+t)+(1/2)∫dt/(1-t)=(1/2)∫d(1+t)/(1+t)-(1/2)∫d(1-t)/(1-t)
=(1/2)ln|1+t|-(1/2)ln|1-t|+c=(1/2)ln|(1+t)/(1-t)|+c=(1/2)ln|(1+sinx)/(1-sinx)|+c//在對數中分子分母同乘1+sinx,
=(1/2)ln|(1+sinx)^2/(cosx)^2|+c=ln|(1+sinx)/cosx|+c
=ln|1/cosx+sinx/cosx|+c=ln(secx+tanx|+c=右邊,
∴等式山清飢成立。
提供一些給你!∫a
dx=ax+
c,a和c都逗返是常數
∫x^adx=
[x^(a
+1)]/(a+1)
+c,其中a為常數且a≠
-1∫1/xdx
=ln|x|+c
∫a^xdx=
(a^x)/lna
+c,其中a
>0且a≠1∫
e^xdx
=e^x+c
∫cosxdx=
sinx+c
∫sinxdx=
-cosx+c
∫cotxdx=
ln|sinx|+c
∫tanxdx=
-ln|cosx|+c
=ln|secx|+c
∫secxdx=
(1/2)ln|(1
+sinx)/(1
-sinx)|+c
=ln|secx
+tanx|+c
∫cscxdx=
ln|tan(x/2)|+c
=(1/2)ln|(1
-cosx)/(1
+cosx)|+c
=-ln|cscx
+cotx|+c
=ln|cscx
-cotx|+c
∫sec^2(x)dx=
tanx+c
∫csc^2(x)dx=
-cotx+c
∫secxtanxdx=
secx+c
∫cscxcotxdx=
-cscx+c
∫dx/(a^2
+x^2)
=(1/a)arctan(x/a)+c
∫dx/√(a^2
-x^2)
=arcsin(x/a)+c
∫dx/√(x^2
+a^2)
=ln|x
+√(x^2
+a^2)|+c
∫dx/√(x^2
-a^2)
=ln|x
+√(x^2
-a^2)|+c
∫√(x^2
-a^2)dx=x/2√(x^2
-a^2)-a^2/2ln[x+√(x^2-a^2)]+c
∫√(x^2
+a^2)dx=x/2√(x^2
+a^2)+a^2/2ln[x+√(x^2+a^2)]+c
∫√(a^2
-x^2)dx=x/2√(a^2
-x^2)+a^2/2arcsin(x/a)+c學習進步!望採納,o(∩_∩)o~
22樓:海海
^1)∫0dx=c 不定積分的定義
2)∫x^udx=(x^(u+1))/(u+1)+c3)∫1/xdx=ln|x|+c
4)∫a^xdx=(a^x)/lna+c
5)∫e^xdx=e^x+c
6)∫sinxdx=-cosx+c
7)兆搜∫襲茄cosxdx=sinx+c
8)∫1/(cosx)^2dx=tanx+c9)∫1/(sinx)^2dx=-cotx+c10)∫1/√(1-x^2) dx=arcsinx+c11)∫1/(1+x^2)dx=arctanx+c12)∫1/(a^2-x^2)dx=(1/2a)ln|(a+x)/(a-x)|+c
13)∫secxdx=ln|secx+tanx|+c 基本積分公式14)∫1/(a^2+x^2)dx=1/a*arctan(x/a)+c
15)∫1/√(a^2-x^2) dx=(1/a)*arcsin(x/a)+c
16) ∫sec^2 x dx=tanx+c;
17) ∫shx dx=chx+c;
18) ∫族禪歷chx dx=shx+c;
19) ∫thx dx=ln(chx)+c;
把兩米長的繩子平均分成三份,每份長多少?每份佔全長幾分之幾
依題意可知,把兩米長的繩子平均分成三份,每份的長度 2 3 2 3米。因為將兩米的繩子平均分成了三份,所以每份繩子佔全長的三分之一。把兩米長的繩子平均分成三份,每份長 2 3 2 3 米 每份佔全長幾分之幾?1 3 1 3 把3米長的繩子平均分成3份,每份佔全長的1 3 1 3 每份長3 3 1 米...
5分之三表示把平均分成份取其中的份
五分之三表示把 1 單位 1 平均分成5份取其中的3份。幾分之幾就是把單位 1 平均分成分母的分數 分母是多少,就是分成了幾份 分子就是取得分數 分子是幾取得就是幾份 5分之三表示把 單位1 平均分成 5 份取其中的 3 份。表示把1平均分成5份取其中的3份 好經典的問題,題目中要是沒有具體提示的話...
把1平均分成100份,其中的1份是也可以表
把 1 平均分成100份,其中的1 份是 1100,也可以表示 0.01.其中的6份是 6100,也可以表示 0.06.故答案為 1 100,0.01,6 100,0.06.把12個圓片分成3份,其中的1份用分數表示是 把12個圓 片分成平 抄均3份,其中襲 的1份用分數表示是1 3。分析過程如下 ...