1樓:
像這種可以有規律按2的n次方進行整數化的數,可直接乘以相應的2的n次方進行整數化,化為二進位制後再移動相應的位數。
小數部分0.125,即1/8,乘以8(2^3)是最好的整數化方法。
(60.125)10*(2^3)10
=(60.125)10*(8)10
=(481)10
=(1e1)16
=(1 1110 0001)2
因為最初乘了8,即2的3次方,所以換算成二進位制時應右移三位,即最終結果等於(111100.001)2。
ps:為什麼要換算成十六進位制?一個十六進位制數就等於四個二進位制位,一次性就計算了四個二進位制位的結果,這當然是相對比較有效率的做法。
一個八進位制數就等於三個二制位,
所以(111100.001)2可按每三位進行一次分割,缺位補零即:(111 100.001)2=(74.1)8一個十六進位制數就等於四個二制位,
所以(111100.001)2可按每四位進行一次分割,缺位補零即:(0011 1100.
0010)2=(3c.2)16--------------------------------------------
(1011.11)2
=(001 011.110)2
=(13.6)8
(1011.11)2
=(1011.1100)2
=(b.c)16
>11*16^0+12*16^(-1)
>11*1+12/16
>11+0.75
=(11.75)10
2樓:
(1)十進位制60.125轉換成
二進位制:111100.001
八進位制:74.1
十六進位制:3c.2
(2)二進位制1011.11轉換成
八進位制:13.6
十進位制:11.75
十六進位制:b.c
將二進位制數1001101.1011轉換成十進位制數(要求寫出過程)。
3樓:
1001101.1011(2)=1x2^6+0x2^5+0x2^4+1x2^3+1x2^2+0x2^1+1x2^0+1/2^1+0/2^2+1/2^3+1/2^4=64+8+4+1+0.5+0.
125+0.0625=77.6875。
4樓:關振翱
1001101.1011(2)
=64+8+4+1+0.5+0.125+0.0625
=77.6875。
那麼,學習方法有哪些呢?
1、預習
預習是非常重要的學習方法,通過預習,可以熟悉文章的內容與結構,在預習的過程中,可以在自己不懂的地方作上標記,這樣上課的時候,就可以帶著問題,讓自己有針對性去聽課,進而提高了學習的興趣與效率。
2、聽課做好筆記
聽課是人們接收資訊的重要的方式。人們在聽課的過程中,可以學習到大部分的內容,因此,把握好聽課,非常的重要。一定要集中精力,聽教師講解,並積極的做好筆記,同時參加課堂活動,積極回答老師提出的問題。
3、認真做作業
老師在上完課之後,都會給學生布置作業。做作業的目的是為了進一步的鞏固課堂上面學到的內容。所以,一定要認真對待作業。
4、複習與總結
學習之後,一定要進行復習與總結,通過複習與總結,可以讓學習到的內容,成為自己的知識,並在複習與總結中,發現新的問題,進一步加深對知識點的理解。
5、保持自信心
自信心可以給人們帶來巨大的動力,只有具備自信心,才可以讓每一天的學習更加的充滿活力,並更好的記憶學習的內容。
將二進位制數11101010011.1011b轉換為八進位制數 將十六進位制數5ce.6ah轉換為二進位制
5樓:匿名使用者
二進位制、八進位制、十
進位制、十六進位制之間轉換
一、十進位制與二進位制之間的轉換(1)十進位制轉換為二進位制,分為整數部分和小數部分①整數部分方法:除2取餘法,即每次將整數部分除以2,餘數為該位權上的數,而商繼續除以2,餘數又為上一個位權上的數,這個步驟一直持續下去,直到商為0為止,最後讀數時候,從最後一個餘數讀起,一直到最前面的一個餘數。下面舉例:
例:將十進位制的168轉換為二進位制得出結果將十進位制的168轉換為二進位制,(10101000)2分析:第一步,將168除以2,商84,餘數為0。
第二步,將商84除以2,商42餘數為0。第三步,將商42除以2,商21餘數為0。第四步,將商21除以2,商10餘數為1。
第五步,將商10除以2,商5餘數為0。第六步,將商5除以2,商2餘數為1。第七步,將商2除以2,商1餘數為0。
第八步,將商1除以2,商0餘數為1。第九步,讀數,因為最後一位是經過多次除以2才得到的,因此它是最高位,讀數字從最後的餘數向前讀,即10101000(2)小數部分方法:乘2取整法,即將小數部分乘以2,然後取整數部分,剩下的小數部分繼續乘以2,然後取整數部分,剩下的小數部分又乘以2,一直取到小數部分為零為止。
如果永遠不能為零,就同十進位制數的四捨五入一樣,按照要求保留多少位小數時,就根據後面一位是0還是1,取捨,如果是零,舍掉,如果是1,向入一位。換句話說就是0舍1入。讀數要從前面的整數讀到後面的整數,下面舉例:
例1:將0.125換算為二進位制得出結果:
將0.125換算為二進位制(0.001)2分析:
第一步,將0.125乘以2,得0.25,則整數部分為0,小數部分為0.
25;第二步,將小數部分0.25乘以2,得0.5,則整數部分為0,小數部分為0.
5;第三步,將小數部分0.5乘以2,得1.0,則整數部分為1,小數部分為0.
0;第四步,讀數,從第一位讀起,讀到最後一位,即為0.001。例2,將0.
45轉換為二進位制(保留到小數點第四位)大家從上面步驟可以看出,當第五次做乘法時候,得到的結果是0.4,那麼小數部分繼續乘以2,得0.8,0.
8又乘以2的,到1.6這樣一直乘下去,最後不可能得到小數部分為零,因此,這個時候只好學習十進位制的方法進行四捨五入了,但是二進位制只有0和1兩個,於是就出現0舍1入。這個也是計算機在轉換中會產生誤差,但是由於保留位數很多,精度很高,所以可以忽略不計。
那麼,我們可以得出結果將0.45轉換為二進位制約等於0.0111上面介紹的方法是十進位制轉換為為二進位制的方法,需要大家注意的是:
1)十進位制轉換為二進位制,需要分成整數和小數兩個部分分別轉換2)當轉換整數時,用的除2取餘法,而轉換小數時候,用的是乘2取整法3)注意他們的讀數方向因此,我們從上面的方法,我們可以得出十進位制數168.125轉換為二進位制為10101000.001,或者十進位制數轉換為二進位制數約等於10101000.
0111。(3)二進位制轉換為十進位制不分整數和小數部分方法:按權相加法,即將二進位制每位上的數乘以權,然後相加之和即是十進位制數。
例將二進位制數101.101轉換為十進位制數。得出結果:
(101.101)2=(5.625)10大家在做二進位制轉換成十進位制需要注意的是1)要知道二進位制每位的權值2)要能求出每位的值
二、二進位制與八進位制之間的轉換首先,我們需要了解一個數學關係,即2^3=8,2^4=16,而八進位制和十六進位制是用這關係衍生而來的,即用三位二進位制表示一位八進位制,用四位二進位制表示一位十六進位制數。接著,記住4個數字8、4、2、1(2^3=8、2^2=4、2^1=2、2^0=1)。現在我們來練習二進位制與八進位制之間的轉換。
(1)二進位制轉換為八進位制方法:取三合一法,即從二進位制的小數點為分界點,向左(向右)每三位取成一位,接著將這三位二進位制按權相加,得到的數就是一位八位二進位制數,然後,按順序進行排列,小數點的位置不變,得到的數字就是我們所求的八進位制數。如果向左(向右)取三位後,取到最高(最低)位時候,如果無法湊足三位,可以在小數點最左邊(最右邊),即整數的最高位(最低位)添0,湊足三位。
例①將二進位制數101110.101轉換為八進位制得到結果:將101110.
101轉換為八進位制為56.5②將二進位制數1101.1轉換為八進位制得到結果:
將1101.1轉換為八進位制為15.4(2)將八進位制轉換為二進位制方法:
取一分三法,即將一位八進位制數分解成三位二進位制數,用三位二進位制按權相加去湊這位八進位制數,小數點位置照舊。例:①將八進位制數67.
54轉換為二進位制因此,將八進位制數67.54轉換為二進位制數為110111.101100,即110111.
1011大家從上面這道題可以看出,計算八進位制轉換為二進位制首先,將八進位制按照從左到右,每位為三位,小數點位置不變然後,按每位為2^2,2^1,2^0(即4、2、1)三位去做湊數,即a×2^2+b×2^1+c×2^0=該位上的數(a=1或者a=0,b=1或者b=0,c=1或者c=0),將abc排列就是該位的二進位制數接著,將每位上轉換成二進位制數按順序排列最後,就得到了八進位制轉換成二進位制的數字。以上的方法就是二進位制與八進位制的互換,大家在做題的時候需要注意的是1)他們之間的互換是以一位與三位轉換,這個有別於二進位制與十進位制轉換2)大家在做添0和去0的時候要注意,是在小數點最左邊或者小數點的最右邊(即整數的最高位和小數的最低位)才能添0或者去0,否則將產生錯誤
三、二進位制與十六進位制的轉換方法:與二進位制與八進位制轉換相似,只不過是一位(十六)與四位(二進位制)的轉換,下面具體講解(1)二進位制轉換為十六進位制方法:取四合一法,即從二進位制的小數點為分界點,向左(向右)每四位取成一位,接著將這四位二進位制按權相加,得到的數就是一位十六位二進位制數,然後,按順序進行排列,小數點的位置不變,得到的數字就是我們所求的十六進位制數。
如果向左(向右)取四位後,取到最高(最低)位時候,如果無法湊足四位,可以在小數點最左邊(最右邊),即整數的最高位(最低位)添0,湊足四位。①例:將二進位制11101001.
1011轉換為十六進位制得到結果:將二進位制11101001.1011轉換為十六進位制為e9.
b②例:將101011.101轉換為十六進位制因此得到結果:
將二進位制101011.101轉換為十六進位制為2b.a(2)將十六進位制轉換為二進位制方法:
取一分四法,即將一位十六進位制數分解成四位二進位制數,用四位二進位制按權相加去湊這位十六進位制數,小數點位置照舊。①將十六進位制6e.2轉換為二進位制數因此得到結果:
將十六進位制6e.2轉換為二進位制為01101110.0010即110110.
001四、八進位制與十六進位制的轉換方法:一般不能互相直接轉換,一般是將八進位制(或十六進位制)轉換為二進位制,然後再將二進位制轉換為十六進位制(或八進位制),小數點位置不變。那麼相應的轉換請參照上面二進位制與八進位制的轉換和二進位制與十六進位制的轉
五、八進位制與十進位制的轉換(1)八進位制轉換為十進位制方法:按權相加法,即將八進位制每位上的數乘以位權,然後相加之和即是十進位制數。例:
①將八進位制數67.35轉換為十進位制(2)十進位制轉換為八進位制十進位制轉換成八進位制有兩種方法:1)間接法:
先將十進位制轉換成二進位制,然後將二進位制又轉換成八進位制2)直接法:前面我們講過,八進位制是由二進位制衍生而來的,因此我們可以採用與十進位制轉換為二進位制相類似的方法,還是整數部分的轉換和小數部分的轉換,下面來具體講解一下:①整數部分方法:
除8取餘法,即每次將整數部分除以8,餘數為該位權上的數,而商繼續除以8,餘數又為上一個位權上的數,這個步驟一直持續下去,直到商為0為止,最後讀數時候,從最後一個餘數起,一直到最前面的一個餘數。②小數部分方法:乘8取整法,即將小數部分乘以8,然後取整數部分,剩下的小數部分繼續乘以8,然後取整數部分,剩下的小數部分又乘以8,一直取到小數部分為零為止。
如果永遠不能為零,就同十進位制數的四捨五入一樣,暫取個名字叫3舍4入。例:將十進位制數796.
703125轉換為八進位制數解:先將這個數字分為整數部分796和小數部分0.703125整數部分小數部分因此,得到結果十進位制796.
703125轉換八進位制為1434.55上面的方法大家可以驗證一下,你可以先將十進位制轉換,然後在轉換為八進位制,這樣看得到的結果是否一樣
六、十六進位制與十進位制的轉換十六進位制與八進位制有很多相似之處,大家可以參照上面八進位制與十進位制的轉換自己試試這兩個進位制之間的轉換。通過上面對各種進位制之間的轉換,我們可以將前面的轉換圖重新完善一下:本文介紹了二進位制、十進位制、八進位制、十六進位制四種進位制之間相互的轉換,大家在轉換的時候要注意轉換的方法,以及步驟,特別是十進位制轉換為期於三種進位制之間,要分為整數部分和小數部分,最後就是小數點的位置。
將1011101101轉換成十進位制,八進位制,十六進位制
十進位制 1011101101 1 2 9 0 2 8 1 2 7 1 2 6 1 2 5 0 2 4 1 2 3 1 2 2 0 2 1 1 2 0 512 128 64 32 8 4 1 749 八進位制 1,011,101,101 1355 十六進位制 10,1110,1101 2ed 749...
二進位制數00111101轉換成十進位制數為多少
二進位制數00111101轉換成十進位制數,結果是61。計算方法 對二進位制資料,從低位向高內位 從右向左 逐個數容字求2的次方,數字0跳過,次方結果再求和。例如,00111101的計算公式 2的0次方 2的2次方 2的3次方 2的4次方 2的5次方 2的6次方 1 4 8 16 32 61 從右到...
將二進位制101101101轉換成十進位制數怎麼轉換要
二進位制轉化成十進位制的方法就是 每一位乘以二的這一位後面有幾位數的次方,例如 10就是,0位後面有0個數,所以就是0乘以2的0次方,1後面有1個數,所以就是1乘以2的1次方,最後所有結果相加就是最後轉換成的十進位制數 101101101換算成 十進位制 第0位 1 2的0次方 1 第1位 0 2的...