1樓:光輝
當迴轉軸是圓柱體軸線時
其中m是圓柱體的質量,r是圓柱體的半徑。
轉動慣量,是剛體繞軸轉動時慣性(迴轉物體保持其勻速圓周運動或靜止的特性)的量度,用字母i或j表示。 在經典力學中,轉動慣量通常以i 或j表示,si 單位為 kg·m²。對於一個質點,i = mr²,其中 m 是其質量,r 是質點和轉軸的垂直距離。
轉動慣量在旋轉動力學中的角色相當於線性動力學中的質量,可形式地理解為一個物體對於旋轉運動的慣性,用於建立角動量、角速度、力矩和角加速度等數個量之間的關係。
擴充套件資料
轉動慣量只決定於剛體的形狀、質量分佈和轉軸的位置,而同剛體繞軸的轉動狀態(如角速度的大小)無關。
形狀規則的勻質剛體,其轉動慣量可直接用公式計算得到。而對於不規則剛體或非均質剛體的轉動慣量,一般通過實驗的方法來進行測定,因而實驗方法就顯得十分重要。轉動慣量應用於剛體各種運動的動力學計算中。
面積對於一軸的轉動慣量,等於該面積對於同此軸平行並通過形心之軸的轉動慣量加上該面積同兩軸間距離平方的乘積。由於和式的第二項恆大於零,因此面積繞過形心之軸的轉動慣量是繞該束平行軸諸轉動慣量中的最小者。
2樓:宋韻哲
圓柱體和圓盤的轉動慣量的計算過程都是相同的。通過取一個環狀的質量元,計算微元的轉動慣量,然後對整個盤求積分。具體計算如下圖:
1.轉動慣量是剛體繞軸轉動時慣性的量度,用字母i或j表示。
2.圓柱體積公式是用於計算圓柱體體積的公式。圓柱體積=π r² h=s底 h先求底面積,然後乘以高。
3樓:寧馨兒講故事
轉動慣量的話是有一個公式的,是一個高等數學裡面數學分析裡面的一段內容,好好的系統學一下了,不然的話噹噹製藥望文生義對你的事是沒有好處。
圓柱體的轉動慣量怎麼求
4樓:人蔘__苦短
圓柱體和圓盤的轉動慣量的計算過程都是相同的。通過取一個環狀的質量元,計算微元的轉動慣量,然後對整個盤求積分。
具體計算如下圖
5樓:宋韻哲
圓柱體和圓盤的bai轉動慣量的計算過程du都是相同的。通zhi過取一個環狀的質量元,dao計算微元回的轉動慣量,然後對整個答盤求積分。具體計算如下圖:
1.轉動慣量是剛體繞軸轉動時慣性的量度,用字母i或j表示。
2.圓柱體積公式是用於計算圓柱體體積的公式。圓柱體積=π r² h=s底 h先求底面積,然後乘以高。
圓柱形的均質物體的轉動慣量如何求???
6樓:匿名使用者
對於圓柱體 當迴轉軸是圓柱體軸線時i=mr^2/2 其中 m 是圓柱體的質量,r 是圓柱體的半徑.
對於一個質點i=mr^2,其中 m 是其質量,r 是質點和轉軸的垂直距離.
轉動慣量只決定於剛體的形狀、質量分佈和轉軸的位置,而同剛體繞軸的轉動狀態(如角速度的大小)無關.
對於形狀規則的均質剛體,可以用積分計算.一般都有算好的公式帶入就行.而對於不規則剛體或非均質剛體的轉動慣量,一般通過實驗的方法來進行測定
對圓柱體,以一個半徑為r厚度為dr高為l的空心圓柱為研究物件,其質量dm=ρ*2πr*l*dr,其轉動慣量為di=r^2*ρ*2πr*l*dr,對di從0到r積分,得到i=1/2ρπr^4*l即1/2mr^2
這個i是ai
大學物理,求圓柱體轉動慣量的證明過程
7樓:匿名使用者
^對於圓柱體 當迴轉軸是圓柱體軸線時i=mr^2/2 其中 m 是圓柱體的質量,r 是圓柱體的半徑.
對於一個質點i=mr^2,其中 m 是其質量,r 是質點和轉軸的垂直距離.
轉動慣量只決定於剛體的形狀、質量分佈和轉軸的位置,而同剛體繞軸的轉動狀態(如角速度的大小)無關.
對於形狀規則的均質剛體,可以用積分計算.一般都有算好的公式帶入就行.而對於不規則剛體或非均質剛體的轉動慣量,一般通過實驗的方法來進行測定
對圓柱體,以一個半徑為r厚度為dr高為l的空心圓柱為研究物件,其質量dm=ρ*2πr*l*dr,其轉動慣量為di=r^2*ρ*2πr*l*dr,對di從0到r積分,得到i=1/2ρπr^4*l即1/2mr^2
這個i是ai
大學物理圓柱轉動慣量到底怎麼算
8樓:怎麼重名
對於圓柱體 當迴轉軸是圓柱體軸線時i=mr^2/2 其中 m 是圓柱體的質量,r 是圓柱體的半徑。
對於一個質點i=mr^2,其中 m 是其質量,r 是質點和轉軸的垂直距離。
轉動慣量只決定於剛體的形狀、質量分佈和轉軸的位置,而同剛體繞軸的轉動狀態(如角速度的大小)無關。
對於形狀規則的均質剛體,可以用積分計算。一般都有算好的公式帶入就行。而對於不規則剛體或非均質剛體的轉動慣量,一般通過實驗的方法來進行測定
對圓柱體,以一個半徑為r厚度為dr高為l的空心圓柱為研究物件,其質量dm=ρ*2πr*l*dr,其轉動慣量為di=r^2*ρ*2πr*l*dr,對di從0到r積分,得到i=1/2ρπr^4*l即1/2mr^2
這個i是ai
看我這麼辛苦的打字就給個好評吧親。
實圓柱體對中心直徑的轉動慣量怎麼求?
9樓:小蟲蟲小星星
在圓柱體截面取來長度為源dx的薄圓板,此薄圓板繞其直徑bai的轉動慣量du為j=m*r^2/4,根zhi據平行軸定理,薄圓板繞圓柱體dao中心的轉動慣量為j+m*x^2(x為薄圓板到中心直徑的距離)。
因為薄圓板的質量是微元,即dm=ρ*dv=ρ*π*r^2*dx所以薄圓板繞中心直徑的轉動慣量為dj=dm*r^2/4+dm*x^2然後在整個長度上積分得圓柱體繞中心直徑的轉動慣量j=∫(ρ*π*r^2*r^2/4*dx+ρ*π*r^2*x^2*dx)
下限為-l/2,上限l/2(l為圓柱體長度) j=m*(3*r^2+l^2)/12 (圓柱體總質量m=ρ*π*r^2*l)
10樓:波絲♂傑克
過圓柱體軸線建立x軸,將圓柱體橫截成n個薄圓盤,那麼圓柱體的轉動慣量就是這n個薄版圓盤的轉動慣量權
之和。作法:可以求出,薄圓盤,對過圓盤直徑的軸的轉動慣量是 1/4 mr*r,那麼距離軸x的圓盤的轉動慣量,用平行軸定理應是 1/4mr*r+mx*x
x的範圍即積分的範圍
轉動慣量怎麼求???
11樓:賦予你我的眼
轉動慣量的計算公式為:
1、對於細杆
(1)當迴轉軸過杆的中點(質心)並垂直於杆時,其中m是杆的質量,l是杆的長度:
(2)當迴轉軸過杆的端點並垂直於杆時,其中m是杆的質量,l是杆的長度:
2、對於圓柱體
當迴轉軸是圓柱體軸線時,其中m是圓柱體的質量,r是圓柱體的半徑:
3、對於細圓環
當迴轉軸通過環心且與環面垂直時:
當迴轉軸通過環邊緣且與環面垂直時:
4、對於薄圓盤
當迴轉軸通過中心與盤面垂直時:
當迴轉軸通過邊緣與盤面垂直時,r為其半徑:
5、對於空心圓柱
當迴轉軸為對稱軸時,r1和r2分別為其內外半徑。
6、對於球殼
當迴轉軸為球殼的切線時:
7、對於實心球體
當迴轉軸為球體的中心軸時,r為球體半徑:
當迴轉軸為球體的切線時:
8、對於立方體
當迴轉軸為其中心軸時,l為立方體邊長:
9、對於長方體
當迴轉軸為其中心軸時,式中l1和l2是與轉軸垂直的長方形的兩條邊長:
擴充套件資料實驗測定:
實際情況下,不規則剛體的轉動慣量往往難以精確計算,需要通過實驗測定。
測定剛體轉動慣量的方法很多,常用的有三線擺、扭擺、復擺等。三線擺是通過扭轉運動測定物體的轉動慣量,其特點是物理影象清楚、操作簡便易行、適合各種形狀的物體,如機械零件、電機轉子、槍炮彈丸、電風扇的風葉等的轉動慣量都可用三線擺測定。這種實驗方法在理論和技術上有一定的實際意義。
12樓:小格調
轉動慣量的表示式為
若剛體的質量是連續分佈的,則轉動慣量的計算公式可寫成(式中mi表示剛體的某個質元的質量,r表示該質元到轉軸的垂直距離,ρ表示該處的密度,求和號(或積分號)遍及整個剛體。)
轉動慣量只決定於剛體的形狀、質量分佈和轉軸的位置,而與剛體繞軸的轉動狀態無關(如角速度的大小)。用公式可直接計算規則形狀均勻剛體的轉動慣量。對於不規則或非均勻剛體的轉動慣量,通常採用實驗法測量,因此實驗法是非常重要的。
13樓:顧世丨
您好 對於細杆
當迴轉軸過杆的中點並垂直於杆時;j=m(l^2)/12
其中m是杆的質量,l是杆的長度。
當迴轉軸過杆的端點並垂直於杆時:j=m(l^2)/3
其中m是杆的質量,l是杆的長度。
對於圓柱體
當迴轉軸是圓柱體軸線時;j=m(r^2)/2
其中m是圓柱體的質量,r是圓柱體的半徑。
對於細圓環
當迴轉軸通過中心與環面垂直時,j=mr^2;
當迴轉軸通過邊緣與環面垂直時,j=2mr^2;
r為其半徑
對於薄圓盤
當迴轉軸通過中心與盤面垂直時,j=﹙1/2﹚mr^2;
當迴轉軸通過邊緣與盤面垂直時,j=﹙3/2﹚mr^2;
r為其半徑
對於空心圓柱
當迴轉軸為對稱軸時,j=﹙1/2﹚m[(r1)^2+(r2)^2];
r1和r2分別為其內外半徑。
對於球殼
當迴轉軸為中心軸時,j=﹙2/3﹚mr^2;
當迴轉軸為球殼的切線時,j=﹙5/3﹚mr^2;
r為球殼半徑。
對於實心球體
當迴轉軸為球體的中心軸時,j=﹙2/5﹚mr^2;
當迴轉軸為球體的切線時,j=﹙7/5﹚mr^2;
r為球體半徑
對於立方體
當迴轉軸為其中心軸時,j=﹙1/6﹚ml^2;
當迴轉軸為其稜邊時,j=﹙2/3﹚ml^2;
當迴轉軸為其體對角線時,j=(3/16)ml^2;
l為立方體邊長。
1/3只知道轉動慣量的計算方式而不能使用是沒有意義的。下面給出一些(繞定軸轉動時)的剛體動力學公式。
角加速度與合外力矩的關係:
角加速度與合外力矩
式中m為合外力矩,β為角加速度。可以看出這個式子與牛頓第二定律是對應的。 角動量:
角動量剛體的定軸轉動動能:
轉動動能
注意這只是剛體繞定軸的轉動動能,其總動能應該再加上質心動能。
只用e=(1/2)mv^2不好分析轉動剛體的問題,是因為其中不包含剛體的任何轉動資訊,裡面的速度v只代表剛體的質心運動情況。由這一公式,可以從能量的角度分析剛體動力學的問題。
轉動慣量(moment of inertia)是剛體繞軸轉動時慣性(迴轉物體保持其勻速圓周運動或靜止的特性)的量度,用字母i或j表示。其量值取決於物體的形狀、質量分佈及轉軸的位置。轉動慣量只決定於剛體的形狀、質量分佈和轉軸的位置,而同剛體繞軸的轉動狀態(如角速度的大小)無關。
形狀規則的勻質剛體,其轉動慣量可直接用公式計算得到。而對於不規則剛體或非均質剛體的轉動慣量,一般通過實驗的方法來進行測定,因而實驗方法就顯得十分重要。轉動慣量的表示式為i=∑ mi*ri^2,若剛體的質量是連續分佈的,則轉動慣量的計算公式可寫成i=∫r^2dm=∫r^2ρdv(式中mi表示剛體的某個質元的質量,ri表示該質元到轉軸的垂直距離,ρ表示該處的密度,求和號(或積分號)遍及整個剛體。
)轉動慣量的量綱為l^2m,在si單位制中,它的單位是kg·m^2。
2/3平行軸定理:設剛體質量為m,繞通過質心轉軸的轉動慣量為ic,將此軸朝任何方向平行移動一個距離d,則繞新軸的轉動慣量i為:
i=ic+md^2
這個定理稱為平行軸定理。
一個物體以角速度ω繞固定軸z軸的轉動同樣可以視為以同樣的角速度繞平行於z軸且通過質心的固定軸的轉動。也就是說,繞z軸的轉動等同於繞過質心的平行軸的轉動與質心的轉動的疊加
垂直軸定理
垂直軸定理:一個平面剛體薄板對於垂直它的平面的軸的轉動慣量,等於繞平面內與垂直軸相交的任意兩正交軸的轉動慣量之和。
垂直軸定理
表示式: iz=ix+iy
式中ix,iy,iz分別代表剛體對x,y,z三軸的轉動慣量.
對於非平面薄板狀的剛體,亦有如下垂直軸定理成立[2]:
垂直軸定理
利用垂直軸定理可對一些剛體對一特定軸的轉動慣量進行較簡便的計算.
剛體對一軸的轉動慣量,可折算成質量等於剛體質量的單個質點對該軸所形成的轉動慣量。由此折算所得的質點到轉軸的距離 ,稱為剛體繞該軸的回轉半徑κ,其公式為 i=mκ^2,式中m為剛體質量;i為轉動慣量。謝謝望採納
有哪些圓柱形的物體,有哪些東西是圓柱體?
粉筆 撞鐘木 沒用過的鉛筆 車釐子罐一類的玻璃瓶 還有罐頭 筆筒 衛生紙 樹樁 竹筒 脣膏 紙巾筒 煙囪等等。圓柱體是由兩個底面和一個側面組成的。擴充套件資料 1 旋轉定義法 一個長方形以一邊為軸順時針或逆時針旋轉一週,所經過的空間叫做圓柱體。2 平移定義法 以一個圓為底面,上或下移動一定的距離,所...
如圖所示,均勻圓柱體甲和盛有液體乙的圓柱形容器放置在水平地面
由圖可知,乙液體的體積大於甲圓柱體的體積,甲的底面積小於乙的底面積,由 m v可知,兩者質量相等時,甲圓柱體的密度大於乙液體的密度,即 甲 乙,當沿水平方向切去部分甲並從容器中抽出部分乙後,甲對地面的壓強小於乙對容器底部的壓強時,即 甲gh甲 乙gh乙,則h甲 h乙,由v sh可知,v甲一定小於v乙...
求圓柱形容器的容積,就是求這個圓柱形容器的體積?判斷題對嗎
是正確的哦圓柱形容器體積就是容積 容積一般略低於體積,判斷 不對,容積是是求內部的。小六數學判斷題求圓柱形容積,就是求這個圓柱形容器的體積對還是錯 差不多吧,準確一點應該由圓柱的內直徑,內高,由這些引數可以求出容積 求圓柱形容器的容積,就是求這個圓柱形容器的體積。這個判斷對不對?一般而言,體積包括容...