數學簡便計算,有哪幾種方法,請歸納小學數學簡便計算的幾種方法

2021-03-12 14:34:59 字數 8250 閱讀 1142

1樓:g老師講

簡便計算主要有三大方法,分別是加減湊整、分組湊整、提公因數法。

它採用數學計算中的拆分湊整思想,通過四則運算規律,從而簡化計算。

就像68+77=?

大多數人不一定立刻能算出結果,

如果換成70+75=?

相信每一個人都可以一口算出和是145。

這裡其實就是把77拆分成2+75,

68+77

=68+2+75

=70+75

=145

遇見覆雜的計算式時,

先觀察有沒有可能湊整,

湊成整十整百之後再進行計算,

不僅簡便,而且避免計算出錯。

①加減湊整

【例題1】999+99+29+9+4=?

題中999,99,29,9這四個數字與整數1000,100,30,10都是相差1,4就可以拆分成1+1+1+1,把這4個1補到999,99,29,9上,原式就可以簡化成:

999+99+29+9+4

=999+99+29+9+1+1+1+1

=999+1+99+1+29+1+9+1

=1000+100+30+10

=1140

【例題2】5999+499+299+19=?

看完例1,再來看看例2,還是末位都是9,自然要用我們的湊整法了,不過稍有不同,因為例2中沒有4來拆分成1+1+1+1。

沒有槍沒有炮,自己去創造!

先把它加上1+1+1+1,然後再減去4,不就相當於式子加了一個0嗎?

5999+499+299+19

=5999+1+499+1+299+1+19+1-4

=6000+500+300+20-4

=6816

②分組湊整

在只有加減法的計算題中,將算式中的各項重新分下組湊整,也可以使計算非常方便。

【例題3】100-95+92-89+86-83+80-77=?

題目中的兩位數加減混合運算,硬算是非常費勁的,但是似乎又不能拆分湊整,再觀察題目可以發現從第2個數95起,後面的數都比前一個小3。

根據加法減法運算性質,我們給相鄰的項加上括號。

100-95+92-89+86-83+80-77

=(100-95)+(92-89)+(86-83)+(80-77)

=5+3+3+3

=14湊整法不僅可以用在加減計算中,乘除加減混合運算也常常會考到。

③提取公因數法

這就需要用到乘法分配律提取公因數,

又稱為提取公因數法。

如果沒有公因數,我們可以採取乘法結合律變化出公因數。

a×b=(a×10)×(b÷10),

a×b÷c=a÷c×b,

a×b×c=a×(b×c)。

【例題4】47.9x6.6+529x0.34=?

很明顯題目中的6.6+3.4=10,我們想辦法湊出一個3.

4,這就用到了a×b=(a×10)×(b÷10)。但是即使10湊出來,仍然不能提取公因數來簡便計算,這就得用到乘法分配律,52.9x3.

4=(47.9+5)x3.4,創造出一個47.

9,方便我們提取公因數。

47.9x6.6+529x0.34

=47.9x6.6+529÷10x10x0.34

=47.9x6.6+(47.9+5)x3.4

=47.9x(6.6+3.4)+17

=496

簡便計算的考察重點在於四則運算規律的靈活運用,方法掌握的基礎上,對於四則運算規律必須牢記在心,才能更好地理解運用。

2樓:執者失紙

主要有六大方法:

「湊整巧算」——運用加法的交換律、結合律進行計算。

運用乘法的交換律、結合律進行簡算。

運用減法的性質進行簡算,同時注意逆進行。

運用除法的性質進行簡算 (除以一個數,先化為乘以一個數的倒數,再分配)。

運用乘法分配律進行簡算。

混合運算(根據混合運算的法則)。

具體解釋:

一、「湊整巧算」——運用加法的交換律、結合律進行計算。

湊整,特別是「湊十」、「湊百」、「湊千」等,是加減法速算的重要方法。

加法交換律

定義:兩個數交換位置和不變,

公式:a+b =b+a,

例如:6+18+4=6+4+18

加法結合律

定義:先把前兩個數相加,或者先把後兩個數相加,和不變。

公式:(a+b)+c=a+(b+c),

例如:(6+18)+2=6+(18+2)

引申——湊整

例如:1.999+19.99+199.9+1999

=2+20+200+2000-0.001-0.01-0.1-1

=2222-1.111

=2220.889

二、運用乘法的交換律、結合律進行簡算。

乘法交換律

定義:兩個因數交換位置,積不變.

公式:a×b=b×a

例如:125×12×8=125×8×12

乘法結合律

定義:先乘前兩個因數,或者先乘後兩個因數,積不變。

公式:a×b×c=a×(b×c),

例如:30×25×4=30×(25×4)

三、運用減法的性質進行簡算,同時注意逆進行。

減法定義:一個數連續減去兩個數,可以先把後兩個數相加,再相減。

公式:a-b-c=a-(b+c),【注意:a-(b+c)= a-b-c的運用】

例如:20-8-2=20-(8+2)

四、運用除法的性質進行簡算 (除以一個數,先化為乘以一個數的倒數,再分配)。

除法 定義:一個數連續除去兩個數 ,可以先把後兩個數相乘,再相除。

公式:a÷b÷c=a÷(b×c),

例如:20÷8÷1.25=20÷(8×1.25)

定義:除數除以被除數,把被除數拆為兩個數字連除(這兩個數的積一定是這個被除數)

例如:64 ÷16=64÷8÷2=8÷2=4

五、運用乘法分配律進行簡算。

乘法分配律

定義:兩個數的和與一個數相乘,可以先把它們與這個數分別相乘,再相加。

公式:(a+b)×c=a×c+b×c

例如;2.5×(100+0.4)= 2.5×100+2.5×0.4= 250+1= 251

六、混合運算(根據混合運算的法則)。

學會數字搭配( 0.5和2、0.25和4、0.125和8)。

3樓:冉聽筠

一)運用加法的交換律、結合律進行計算。要求學生善於觀察題目,同時要有湊整意識。

如:5.7+3.1+0.9+1.3,等。

(二)運用乘法的交換律、結合律進行簡算。

如:2.5×0.125×8×4等,如果遇到除法同樣適用,或將除法變為乘法來計算。如:8.3×67÷8.3÷6.7等。

(三)運用乘法分配律進行簡算,遇到除以一個數,先化為乘以一個數的倒數,再分配。

如:2.5×(100+0.4),還應注意,有些題目是運用分配律的逆運算來簡算:即提取公因數。如:0.93×67+33×0.93。

(四)運用減法的性質進行簡算。減法的性質用字母公式表示:a-b-c=a-(b+c),同時注意逆進行。

如:7691-(691+250)。

(五)運用除法的性質進行簡算。除法的性質用字母公式表示如下:a÷b÷c=a÷(b×c),同時注意逆進行,

如:736÷25÷4。

(六)接近整百的數的運算。這種題型需要拆數、轉化等技巧配合。

如;302+76=300+76+2,298-188=300-188-2,等。

(七)認真觀察某項為0或1的運算。

如:7.93+2.07×(4.5-4.5)等。

總的說來,簡便運算的思路是:(1)運用運算的性質、定律等。(2)可能打亂常規的計算順序。

(3)拆數或轉化時,數的大小不能改變。(4)正確處理好每一步的銜接。(5)速算也是計算,是將硬算化為巧算。

(6)能提高計算的速度及能力,並能培養嚴謹細緻、靈活巧妙的工作習慣。

請歸納小學數學簡便計算的幾種方法

4樓:海風教育

對於那些成績較差的小學生來說,學習小學數學都有很大的難度,其實小學數學屬於基礎類的知識比較多,只要掌握一定的技巧還是比較容易掌握的.在小學,是一個需要養成良好習慣的時期,注重培養孩子的習慣和學習能力是重要的一方面,那小學數學有哪些技巧?

一、重視課內聽講,課後及時進行復習.

新知識的接受和數學能力的培養主要是在課堂上進行的,所以我們必須特別注意課堂學習的效率,尋找正確的學習方法.在課堂上,我們必須遵循教師的思想,積極制定以下步驟,思考和**解決問題的思想與教師之間的差異.特別是,我們必須瞭解基本知識和基本學習技能,並及時審查它們以避免疑慮.

首先,在進行各種練習之前,我們必須記住教師的知識點,正確理解各種公式的推理過程,並試著記住而不是採用"不確定的書籍閱讀".勤于思考,對於一些問題試著用大腦去思考,認真分析問題,嘗試自己解決問題.

二、多做習題,養成解決問題的好習慣.

如果你想學好數學,你需要提出更多問題,熟悉各種問題的解決問題的想法.首先,我們先從課本的題目為標準,反覆練習基本知識,然後找一些課外活動,幫助開拓思路練習,提高自己的分析和掌握解決的規律.對於一些易於查詢的問題,您可以準備一個用於收集的錯題本,編寫自己的想法來解決問題,在日常養成解決問題的好習慣.

學會讓自己高度集中精力,使大腦興奮,快速思考,進入最佳狀態並在考試中自由使用.

三、調整心態並正確對待考試.

首先,主要的重點應放在基礎、基本技能、基本方法,因為大多數測試出於基本問題,較難的題目也是出自於基本.所以只有調整學習的心態,儘量讓自己用一個清楚的頭腦去解決問題,就沒有太難的題目.考試前要多對習題進行演練,開闊思路,在保證真確的前提下提高做題的速度.

對於簡單的基礎題目要拿出二十分的把握去做;難得題目要儘量去做對,使自己的水平能正常或者超常發揮.

由此可見小學數學的技巧就是多做練習題,掌握基本知識.另外就是心態,不能見考試就膽怯,調整心態很重要.所以大家可以遵循這些技巧,來提高自己的能力,使自己進入到數學的海洋中去.

5樓:丹格教育

1.利用運算定律、性質、法則。

①加法

加法交換律:a+

b=b+a,

加法結合律:(a+b)+c=a+(b+c),

②減法性質

a-(b+c)=a-b-c,

a-(b-c)=a-b+c,

a-b-c=a-c-b,

(a+b)-c=a-c+b=b-c+a。

③乘法

乘法交換律:a×b=b×a,

乘法結合律:(a×b)×c=a×(b×c),

乘法分配律:

(a+b)×c=a×c+b×c,

(a-b)×c=a×c-b×c,

④除法性質

a÷(b×c)=a÷b÷c,

a÷(b÷c)=a÷b×c,

a÷b÷c=a÷c÷b,

(a+b)÷c=a÷c+b÷c,

(a-b)÷c=a÷c-b÷c.

⑤和、差、積、商不變的規律

和不變:如果a+b=c,那麼(a+d)+(b-d)=c,

差不變:如果a-b=c,那麼(a+d)-(b+d)=c,

積不變:如果a×b=c,那麼(a×d)×(b÷d)=c,

商不變:如果a÷b=c,那麼(a×d)÷(b×d)=c,(a÷d)÷(b÷d)=c.

2.拆數法、湊整法。

3.利用基準數法。

4.等差數列求和。

例1:87+44+56=?

分析:運用加法結合律,先將44和56湊整,再計算。

解:87+44+56

=87+(44+56)

=87+100

=187

例2:63+18+19=?

分析:將63拆分為60+1+2,然後再用結合律將18與2,19與1湊整。

解:63+18+19

=60+2+1+18+19

=60+(2+18)+(1+19)

=60+20+20

=100

例3:45-18+19=?

分析:在只有加減法的同級運算中,運算順序可改動,先+19,再-18,也可以理解為「帶符號搬家」。

解:45-18+19

=45+19-18

=45+(19-18)

=45+1

=46例4:657-253-257=?

分析:運用減法性質,a-b-c=a-c-b.

解:657-253-257

=657-257-253

=400-253

=147

例5:170-(100+23)=?

分析:運用減法性質,a-(b+c)=a-b-c.

解:170-(100+23)

=170-100-23

=70-23

=47例6:460-(100-32)=?

分析:運用減法性質,a-(b-c)=a-b+c.

解:460-(100-32)

=460-100+32

=360+32

=392

例7:(30+125)×8=?

分析:運用乘法分配律使計算簡化。

解:(30+125)×8

=30×8+125×8

=240+1000

=1240

例8:12×125×0.25×8=?

分析:運用乘法交換律和結合律。

解:12×125×0.25×8

=12×0.25×125×8

=(12×0.25)×(125×8)

=3×1000

=3000

例9:375÷(125÷0.5)=?

分析:運用除法性質。

解:375÷(125÷0.5)

=375÷125×0.5

=3×0.5

=1.5

例10:4.2÷(0.6×0.35)=?

分析:運用除法性質。

解:5.4÷(0.6×0.3)

=5.4÷0.6÷0.3

=9÷0.3

=30例11:3.48+0.98=?

分析:利用和不變規律,給0.98+0.02,同時給3.48-0.02;

解:3.48+0.98

=(3.48-0.02)+(0.98+0.02)

=3.46+1

=4.46

例12:4989-2998=?

分析:利用差不變規律,給2998+2,給4989+2,讓運算簡化。

解:4989-2998

=(4989+2)-(2998+2)

=4991-3000

=1991

例13:74.6×6.4+7.46×36=?

分析:利用積不變規律和分配律使運算簡化。

解:74.6×6.4+7.46×36

=7.46×64+7.46×36

=7.46×(64+36)

=7.46×100

=746

例14:12.25÷0.25=?

分析:運用商不變規律,除數、被除數同時「×4」.

解:12.25÷0.25

=(12.25×4)÷(0.25×4)

=49÷1

=49例15:計算19999+1999+198+6=?

分析:將6拆分為1+1+1+2,再利用加法結合律使運算簡化。

解:19999+1999+198+6

=(19999+1)+(1999+1)+(198+2)+2

=20000+2000+200+2

=22202

例16:計算2072+2052+2062+2042+2083=?

分析:取基準數2062,第一項需要+10,第二項需要-10,第三項不變,或+0,第四項-20,第五項+21.

解:2072+2052+2062+2042+2083

=2062×5+10-10+0-20+21

=10311

例17:計算1+2+3+4+5+6+7+8+9=?

解:1+2+3+4+5+6+7+8+9

=5×9(中間數是5,個數為9)

=45例18:1+2+3+4+5+6+7+8+9+10=?

解:1+2+3+4+5+6+7+8+9+10

=(1+10)×5(共10個數,個數的一半是5)

=55

美白方法有哪幾種,牙齒美白有哪幾種方法

您好,知我藥妝肌膚顧問很高興幫助您。只需要把 紙泡在牛奶裡,然後敷在臉上就好。你只要準備 紙,記得喝牛 肌膚水嫩水嫩 hjq 有很多種的,啊,等等 牙齒美白有哪幾種方法 牙齒美白,首先需注意 1,不要吸菸,因為煙含大量的煙油長時間吸菸,會導致牙齒變黃等問題。2,要飯後漱口。3,保持每天早晚刷牙,建議...

岩石分類方法有幾種,給岩石分類有哪幾種方法

岩石分類可分為三類 一,岩漿岩,又稱為火成岩,佔地殼總質量的95 岩漿岩又分為超基性岩,基性巖,中性巖和酸性巖4種。二,沉積岩。三,變質岩。岩石分類可分為三類 一,岩漿又稱為火成岩佔地殼總質量的94 給岩石分類有哪幾種方法 我國用的是bq分類法,其他的有岩石質量指標 rqd 分類法,巖體地質力學 c...

植髮有幾種方法,植髮技術有哪幾種?

植髮有2種方式,國際認可的植髮技術是單體毛囊培植再生技術,從自身後枕部開刀集中提取毛囊,採用專利精細器械單體移植。另一個是不開刀的植髮技術,採用顯微遊離裝置從後枕部,分散性地單個提取毛囊,按照頭髮生長方向單體移植到脫髮部位。針對不同情況適合不同的方式。關於植髮我建議可以到大麥微針植髮看看,2006年...