問一下崩壞三麗塔的這個鐮刀怎麼做?用什麼材料,求問大佬們

2021-04-26 12:50:24 字數 5758 閱讀 7282

1樓:燈煙青雨丶

。。你是說遊戲裡的**還是你要做個實體版的出來。

遊戲內目前還沒有進懸賞所以只能補給抽出來。

實體版的話**上有不少這種**自制你可以去看一下。

cosx的平方的不定積分怎麼求

2樓:愛**米

∫cos²xdx

=∫½[1+cos(2x)]dx

=∫½dx+∫½cos(2x)dx

=∫½dx+¼∫cos(2x)d(2x)

=½x+¼sin(2x) +c

解題思路:

先運用二倍角公式進行化簡。

cos(2x)=2cos²x-1

則cos²x=½[1+cos(2x)]

擴充套件資料:同角三角函式的基本關係式

倒數關係:tanα ·cotα=1、sinα ·cscα=1、cosα ·secα=1;

商的關係: sinα/cosα=tanα=secα/cscα、cosα/sinα=cotα=cscα/secα;

和的關係:sin2α+cos2α=1、1+tan2α=sec2α、1+cot2α=csc2α;

平方關係:sin²α+cos²α=1。

3樓:藍藍路

解∫ (cosx)^2dx

=(1/2)*∫ 1+cos2xdx

=(1/2)∫ dx+(1/4)∫ cos2xd2x=x/2+1/4*sin2x+c

4樓:夙幾君未涼

把cosx的平方換為二倍角公式即可,望採納

5樓:匿名使用者

一、可以使用倍角公式化簡:

倍角公式

二、還可以使用分步積分法!

分佈積分法

6樓:匿名使用者

我覺得這個問題應該找專業人士回答,因為他應該是一個數學問題,嗯,進來高中的數學老師就能夠回答。

7樓:逝水流年不復卿

∫ cos²x dx :

利用回cos²x = (1 + cos2x) / 2 和 ∫答 cos2x dx =sin(2x) / 2

∫ cos²x dx = ∫ (1 + cos2x) / 2 dx = x/2 + 1/2∫ cos2x dx = x/2 + 1/4∫ dsin2x = x/2 + sin2x/4 + c

8樓:我還會在想你的

1/3(sinx)3

不定積分的含義

9樓:匿名使用者

就是求導函式是f(x)的函式

10樓:qq1292335420我

性質1:設a與b均為常數,則f(a->b)[a*f(x)+b*g(x)]dx=a*f(a->b)f(x)dx+b*f(a->b)g(x)dx

性質2:設ab)f(x)dx=f(a->c)f(x)dx+f(c->b)f(x)dx

性質3:如果在區間【a,b】上f(x)恆等於1,那麼f(a->b)1dx=f(a->b)dx=b-a

性質4:如果在區間【a,b】上f(x)>=0,那麼f(a->b)f(x)dx>=0(ab)f(x)dx<=m(b-a) (ab)f(x)dx=f(c)(b-a) (a<=c<=b)成立。

11樓:你的眼神唯美

不定積分結果不唯一求導驗證應該能夠提高湊微分的計算能力。

那就用數字帝國,唉

常用不定積分公式?

12樓:文子

在微積分中,一個函式f 的不定積分,或原函式,或反導數,是一個導數等於f 的函式 f ,即f ′ = f。不定積分和定積分間的關係由微積分基本定理確定,其中f是f的不定積分。

根據牛頓-萊布尼茨公式,許多函式的定積分的計算就可以簡便地通過求不定積分來進行。這裡要注意不定積分與定積分之間的關係:定積分是一個數,而不定積分是一個表示式,它們僅僅是數學上有一個計拿搏算關係。

一個函式,可以存在不定積分,而不存在定積分,也可以存在定積分,而沒有不定積分。連續函式,一定存在定積分和不定積分。

13樓:鞠翠花潮戌

1)∫0dx=c

2)∫x^udx=(x^(u+1))/(u+1)+c

3)∫1/xdx=ln|x|+c

4)∫a^xdx=(a^x)/lna+c

5)∫e^xdx=e^x+c

6)∫sinxdx=-cosx+c

7)∫cosxdx=sinx+c

8)∫1/(cosx)^2dx=tanx+c

9)∫1/(sinx)^2dx=-cotx+c

10)∫1/√(1-x^2)

dx=arcsinx+c

11)∫1/(1+x^2)dx=arctanx+c

12)∫1/(a^2-x^2)dx=(1/2a)ln|(a+x)/(a-x)|+c

擴充套件資料:

積分的一個嚴格的數學定義由波恩哈德·黎曼給出(參見條目「黎曼積分」)。黎曼的定義運用了極限的概念,把曲邊梯形設想為一系列矩形組合的極限。從十九世紀起,更高階的積分定義逐漸出現,有了對各種積分域上的各種型別的函式的積分。

比如說,路徑積分是多元函式的積念慧分,積分的區間不再是一條線段(區間[a,b]),而是一條平面上或空間中的曲線段;在面積積分中,曲線被三維空間中的一個敬枝曲面代替。對微分形式的積分是微分幾何中的基本概念。

求不定積分的方法:

第一類換元其實就是一種拼湊,利用f'(x)dx=df(x);而前面的剩下的正好是關於f(x)的函式,再把f(x)看為一個整體,求出最終的結果。亮高敏(用換元法說,就是把f(x)換為t,再換回來)

分部積分,就那固定的幾種型別,無非就是三角函式乘上x,或者指數函式、對數函式乘上一個x這類的,記憶方法是把其中一部分利用上面提到的f『(x)dx=df(x)變形,再用∫xdf(x)=f(x)x-∫f(x)dx這樣的公式,當然x可以換成其他g(x)

14樓:鄒桂枝殳巳

∫secx=ln|secx+tanx|+c推導:左邊=∫dx/正大cosx=∫cosxdx/(cosx)^2=∫d(sinx)/[1-(sinx)^2]令t=sinx,

=∫dt/(1-t^2)

=(1/2)∫dt/(1+t)+(1/2)∫dt/(1-t)=(1/2)∫d(1+t)/(1+t)-(1/2)∫d(1-t)/(1-t)

=(1/2)ln|1+t|-(1/2)ln|1-t|+c=(1/2)ln|(1+t)/(1-t)|+c=(1/2)ln|(1+sinx)/(1-sinx)|+c//在對數中分子分母同乘1+sinx,

=(1/2)ln|(1+sinx)^2/(cosx)^2|+c=ln|(1+sinx)/cosx|+c

=ln|1/cosx+sinx/cosx|+c=ln(secx+tanx|+c=右邊,

∴等式山清飢成立。

提供一些給你!∫a

dx=ax+

c,a和c都逗返是常數

∫x^adx=

[x^(a

+1)]/(a+1)

+c,其中a為常數且a≠

-1∫1/xdx

=ln|x|+c

∫a^xdx=

(a^x)/lna

+c,其中a

>0且a≠1∫

e^xdx

=e^x+c

∫cosxdx=

sinx+c

∫sinxdx=

-cosx+c

∫cotxdx=

ln|sinx|+c

∫tanxdx=

-ln|cosx|+c

=ln|secx|+c

∫secxdx=

(1/2)ln|(1

+sinx)/(1

-sinx)|+c

=ln|secx

+tanx|+c

∫cscxdx=

ln|tan(x/2)|+c

=(1/2)ln|(1

-cosx)/(1

+cosx)|+c

=-ln|cscx

+cotx|+c

=ln|cscx

-cotx|+c

∫sec^2(x)dx=

tanx+c

∫csc^2(x)dx=

-cotx+c

∫secxtanxdx=

secx+c

∫cscxcotxdx=

-cscx+c

∫dx/(a^2

+x^2)

=(1/a)arctan(x/a)+c

∫dx/√(a^2

-x^2)

=arcsin(x/a)+c

∫dx/√(x^2

+a^2)

=ln|x

+√(x^2

+a^2)|+c

∫dx/√(x^2

-a^2)

=ln|x

+√(x^2

-a^2)|+c

∫√(x^2

-a^2)dx=x/2√(x^2

-a^2)-a^2/2ln[x+√(x^2-a^2)]+c

∫√(x^2

+a^2)dx=x/2√(x^2

+a^2)+a^2/2ln[x+√(x^2+a^2)]+c

∫√(a^2

-x^2)dx=x/2√(a^2

-x^2)+a^2/2arcsin(x/a)+c學習進步!望採納,o(∩_∩)o~

15樓:海海

^1)∫0dx=c 不定積分的定義

2)∫x^udx=(x^(u+1))/(u+1)+c3)∫1/xdx=ln|x|+c

4)∫a^xdx=(a^x)/lna+c

5)∫e^xdx=e^x+c

6)∫sinxdx=-cosx+c

7)兆搜∫襲茄cosxdx=sinx+c

8)∫1/(cosx)^2dx=tanx+c9)∫1/(sinx)^2dx=-cotx+c10)∫1/√(1-x^2) dx=arcsinx+c11)∫1/(1+x^2)dx=arctanx+c12)∫1/(a^2-x^2)dx=(1/2a)ln|(a+x)/(a-x)|+c

13)∫secxdx=ln|secx+tanx|+c 基本積分公式14)∫1/(a^2+x^2)dx=1/a*arctan(x/a)+c

15)∫1/√(a^2-x^2) dx=(1/a)*arcsin(x/a)+c

16) ∫sec^2 x dx=tanx+c;

17) ∫shx dx=chx+c;

18) ∫族禪歷chx dx=shx+c;

19) ∫thx dx=ln(chx)+c;

不定積分?

16樓:天使的星辰

8、c原式=∫[1/x²-1/(x²+1)]dx=-1/x-arctanx+c

9、a可以從平面推廣到三維

經過點(2,3)且平行於y軸的是x=2

因此推廣到 平面是也是x=2

不定積分問題? 10

17樓:心飛翔

在微積分中,一個函式f 的不定積分,或原函式,或反導數,是一個導數等回

於f 的函式 f ,即f ′答 = f。不定積分和定積分間的關係由微積分基本定理確定。其中f是f的不定積分。

根據牛頓——萊布尼茲公式,許多函式的定積分的計算就可以簡便地通過求不定積分來進行。現實應用主要在工程領域,算水壓力、結構應力等都要用不定積分,應為很多受力情況不是單純的,是在不斷變化的,這個就只有用不定積分積分,再用定積分計算 .

問一下,這個是什麼品種的狗狗,問一下這個狗狗是啥品種的?

看您的補充就知道不是金毛或鬆獅了。因為它是中小型犬。而且樣子也不像那兩個品種。但肯定可以確定的是一隻串串。不過挺可愛的。嘻嘻。個人覺得比較像貴賓串串 博美串串。耳朵和我們家的串串一樣 應該是蝴蝶犬和替他狗狗的串串吧 看上去像蝴蝶京巴串 長的很可愛 希望lz的狗狗快快樂樂的生活 我家也有3只狗狗 問一...

問一下這個是哪個電視劇裡的,問一下這個是哪個電視劇裡的

香蜜沉沉燼如霜裡的潤玉,羅雲熙 leo 1988年7月28日出生於四川省成都市,中國內地男歌手 演員,畢業於上海戲劇學院舞蹈學院。2010年12月27日,以jboy3組合成員身份出道,發行單曲 愛的契約書 2012年jboy3組合正式解散 4月27日,羅雲熙與符龍飛組成 雙孖jl 組合,並推出組合同...

問一下這個人的名字叫什麼,問一下這個圖片動漫名字和這個人的名字叫什麼?

逢阪大河,出自動畫 龍與虎 外號掌中萌虎 09年萌王 龍與虎中的女主角,叫逢阪大河。問一下這個 動漫名字和這個人的名字叫什麼?出處 為了女兒,我說不定連魔王都能幹掉。第4集人物 拉提娜 如下 網頁 右鍵點選 選擇 在新標籤頁中開啟 可以檢視大圖麻煩請及時採納回答,謝謝!動漫 為了女兒,我說不定連魔王...