圓周率是誰發明的, 是誰發明的?

2022-02-05 05:27:35 字數 5074 閱讀 8208

1樓:匿名使用者

其實圓周率是常數很早就被發現了 只不過一代一代的數學家通過努力 不斷的在試圖將這個恆定數值精確 通常認為最早發現精確圓周率的是祖沖之

2樓:匿名使用者

古希臘歐幾里德《幾何原本》(約公元前3世紀初)中提到圓周率是常數,中國古算書《周髀算經》( 約公元前2世紀)中有「徑一而週三」的記載,也認為圓周率是常數。歷史上曾採用過圓周率的多種近似值,早期大都是通過實驗而得到的結果,如古埃及紙草書(約公元前1700)中取pi=(4/3)^4≈3.1604 。

第一個用科學方法尋求圓周率數值的人是阿基米德,他在《圓的度量》(公元前3世紀)中用圓內接和外切正多邊形的周長確定圓周長的上下界,從正六邊形開始,逐次加倍計算到正96邊形,得到(3+(10/71))<π<(3+(1/7)) ,開創了圓周率計算的幾何方法(亦稱古典方法,或阿基米德方法),得出精確到小數點後兩位的π值。

中國數學家劉徽在註釋《九章算術》(263年)時只用圓內接正多邊形就求得π的近似值,也得出精確到兩位小數的π值,他的方法被後人稱為割圓術。他用割圓術一直算到圓內接正192邊形。

南北朝時代數學家祖沖之進一步得出精確到小數點後7位的π值(約5世紀下半葉),給出不足近似值3.1415926和過剩近似值3.1415927,還得到兩個近似分數值,密率355/113和約率22/7。

其中的密率在西方直到1573才由德國人奧托得到,2023年發表於荷蘭工程師安託尼斯的著作中,歐洲稱之為安託尼斯率。

阿拉伯數學家卡西在15世紀初求得圓周率17位精確小數值,打破祖沖之保持近千年的紀錄。

德國數學家柯倫於2023年將π值算到20位小數值,後投入畢生精力,於2023年算到小數後35位數,該數值被用他的名字稱為魯道夫數。

無窮乘積式、無窮連分數、無窮級數等各種π值表示式紛紛出現,π值計算精度也迅速增加。2023年英國數學家梅欽計算π值突破100位小數大關。1873 年另一位英國數學家尚可斯將π值計算到小數點後707位,可惜他的結果從528位起是錯的。

到2023年英國的弗格森和美國的倫奇共同發表了π的808位小數值,成為人工計算圓周率值的最高紀錄。

電子計算機的出現使π值計算有了突飛猛進的發展。2023年美國馬里蘭州阿伯丁的軍隊彈道研究實驗室首次用計算機(eniac)計算π值,一下子就算到2037位小數,突破了千位數。2023年美國哥倫比亞大學研究人員用克雷-2型和ibm-vf型巨型電子計算機計算出π值小數點後4.

8億位數,後又繼續算到小數點後10.1億位數,創下最新的紀錄。至今,最新紀錄是小數點後25769.

8037億位。

【圓周率的計算】

餘 古今中外,許多人致力於圓周率的研究與計算。為了計算出圓周率的越來越好的近似值,一代代的數學家為這個神祕的數貢獻了無數的時間與心血。

十九世紀前,圓周率的計算進展相當緩慢,十九世紀後,計算圓周率的世界紀錄頻頻創新。整個十九世紀,可以說是圓周率的手工計算量最大的世紀。

進入二十世紀,隨著計算機的發明,圓周率的計算有了突飛猛進。藉助於超級計算機,人們已經得到了圓周率的2061億位精度。

歷史上最馬拉松式的計算,其一是德國的ludolph van ceulen,他幾乎耗盡了一生的時間,計算到圓的內接正262邊形,於2023年得到了圓周率的35位精度值,以至於圓周率在德國被稱為ludolph數;其二是英國的威廉·山克斯,他耗費了15年的光陰,在2023年算出了圓周率的小數點後707位,並將其刻在了墓碑上作為一生的榮譽。可惜,後人發現,他從第528位開始就算錯了。

把圓周率的數值算得這麼精確,實際意義並不大。現代科技領域使用的圓周率值,有十幾位已經足夠了。如果用魯道夫算出的35位精度的圓周率值,來計算一個能把太陽系包起來的一個圓的周長,誤差還不到質子直徑的百萬分之一。

以前的人計算圓周率,是要**圓周率是否迴圈小數。自從2023年蘭伯特證明了圓周率是無理數,2023年林德曼證明了圓周率是超越數後,圓周率的神祕面紗就被揭開了。

現在的人計算圓周率, 多數是為了驗證計算機的計算能力,還有,就是為了興趣。

3樓:匿名使用者

一般認為是圓周率。以π來表示,是一個在數學及物理學普遍存在的數學常數。它定義為圓形之周長與直徑之比。祖沖之,

4樓:匿名使用者

祖沖之,那啥貌似是的~

π是誰發明的?

5樓:匿名使用者

祖沖之發明的;祖沖之在數學上的傑出成就,是關於圓周率的計算.秦漢以前,人們以徑一週三做為圓周率,這就是古率.後來發現古率誤差太大,圓周率應是圓徑一而週三有餘,不過究竟餘多少,意見不一。

直到三國時期,劉徽提出了計算圓周率的科學方法--割圓術,用圓內接正多邊形的周長來逼近圓周長.劉徽計算到圓內接96邊形, 求得π=3.14,並指出,內接正多邊形的邊數越多,所求得的π值越精確。

祖沖之在前人成就的基礎上,經過刻苦鑽研,反覆演算,求出π在3.1415926與3.1415927之間.並得出了π分數形式的近似值,取為約率 ,取為密率,其中取六位小數是3.

141929,它是分子分母在1000以內最接近π值的分數。

圓周率(pai)是圓的周長與直徑的比值,一般用希臘字母π表示,是一個在數學及物理學中普遍存在的數學常數。π也等於圓形之面積與半徑平方之比。是精確計算圓周長、圓面積、球體積等幾何形狀的關鍵值。

在分析學裡,π可以嚴格地定義為滿足sin x = 0的最小正實數x。

圓周率用字母 π(讀作pài)表示,是一個常數(約等於3.141592654),是代表圓周長和直徑的比值。它是一個無理數,即無限不迴圈小數。

在日常生活中,通常都用3.14代表圓周率去進行近似計算。而用十位小數3.

141592654便足以應付一般計算。即使是工程師或物理學家要進行較精密的計算,充其量也只需取值至小數點後幾百個位。

圓周率定義

6樓:理工李雲龍

巴比倫人定出π大概等於31/8(3.125),埃及人測量結果稍為遜色,是大概3.16。

在公元前三世紀,希臘數學家阿基米德可可以是首個用科學方法計算π人,算出大概等於3.14。

祖沖之(429-500),字文遠。出生於建康(今南京),祖籍范陽郡遒縣(今河北淶水縣),中國南北朝時期傑出的數學家、天文學家。

祖沖之一生鑽研自然科學,其主要貢獻在數學、天文曆法和機械製造三方面。他在劉徽開創的探索圓周率的精確方法的基礎上,首次將「圓周率」精算到小數第七位,即在3.1415926和3.

1415927之間,他提出的「祖率」對數學的研究有重大貢獻。直到16世紀,阿拉伯數學家阿爾·卡西才打破了這一紀錄。

由他撰寫的《大明曆》是當時最科學最進步的歷法,對後世的天文研究提供了正確的方法。其主要著作有《安邊論》《綴術》《述異記》《歷議》等。

7樓:匿名使用者

秦漢以前,人們以徑一週三做為圓周率,這就是古率.後來發現古率誤差太大,圓周率應是圓徑一而週三有餘,不過究竟餘多少,意見不一.直到三國時期,劉徽提出了計算圓周率的科學方法--割圓術,用圓內接正多邊形的周長來逼近圓周長.劉徽計算到圓內接96邊形, 求得π=3.14,並指出,內接正多邊形的邊數越多,所求得的π值越精確.祖沖之在前人成就的基礎上,經過刻苦鑽研,反覆演算,求出π在3.1415926與3.

1415927之間.並得出了π分數形式的近似值,取為約率 ,取為密率,其中取六位小數是3.141929,它是分子分母在1000以內最接近π值的分數.

劉徽(約公元225年-295年),漢族,山東濱州鄒平縣人,魏晉期間偉大的數學家,中國古典數學理論的奠基人之一。是中國數學史上一個非常偉大的數學家,他的傑作《九章算術注》和《海島算經》,是中國最寶貴的數學遺產。劉徽思想敏捷,方法靈活,既提倡推理又主張直觀。

他是中國最早明確主張用邏輯推理的方式來論證數學命題的人。

祖沖之(公元429-500年)是我國南北朝時期,河北省淶源縣人.他從小就閱讀了許多天文、數學方面的書籍,勤奮好學,刻苦實踐,終於使他成為我國古代傑出的數學家、天文學家.

祖沖之在數學上的傑出成就,是關於圓周率的計算.

8樓:麋鹿時往前走

π是我國西漢末年,劉歆最早根據已知圓面積,首先推出未知「圓的周長與直徑的比」然後才能發現它們的比值圓周率為3.1547。

9樓:匿名使用者

圓周率(π)是一個常數(約等於3.141592654),是代表圓周長和直徑的比值。它是一個無理數,即是一個無限不迴圈小數。

但在日常生活中,通常都用3.14來代表圓周率去進行計算,即使是工程師或物理學家要進行較精密的計算,也只取值至小數點後約20位。   π(讀作「派」)是第十六個希臘字母,本來它是和圓周率沒有關係的,但大數學家尤拉在一七三六年開始,在書信和**中都用π來代表圓周率。

既然他是大數學家,所以人們也有樣學樣地用π來表示圓周率了

圓周率是誰發明的?

10樓:姐妹食記

圓周率不是某一個人發明的,而是在歷史的程序中,不同的數學家經過無數次的演算得出的。

古希臘大數學家阿基米德(公元前287–212 年) 開創了人類歷史上通過理論計算圓周率近似值的先河。

公元480年左右,南北朝時期的數學家祖沖之進一步得出精確到小數點後7位的結果,給出不足近似值3.1415926和過剩近似值3.1415927,還得到兩個近似分數值。

11樓:叫那個不知道

圓周率不是誰的發明,是我國古代數學家祖沖之首先計算出其準確值在3.1415926和3.1415927之間,並可以用分數355/113來表達,準確到小數點後第7位。

擴充套件資料

圓周率(pi)是圓的周長與直徑的比值,一般用希臘字母π表示,是一個在數學及物理學中普遍存在的數學常數。π也等於圓形之面積與半徑平方之比。是精確計算圓周長、圓面積、球體積等幾何形狀的關鍵值。

在分析學裡,π可以嚴格地定義為滿足sin x = 0的最小正實數x。

圓周率用希臘字母 π(讀作pài)表示,是一個常數(約等於3.141592654),是代表圓周長和直徑的比值。它是一個無理數,即無限不迴圈小數。

在日常生活中,通常都用3.14代表圓周率去進行近似計算。而用十位小數3.

141592654便足以應付一般計算。即使是工程師或物理學家要進行較精密的計算,充其量也只需取值至小數點後幾百個位。

2023年,英國數學家約翰·沃利斯(john wallis)出版了一本數學專著,其中他推匯出一個公式,發現圓周率等於無窮個分數相乘的積。2023年,羅切斯特大學的科學家們在氫原子能級的量子力學計算中發現了圓周率相同的公式

圓周率是誰發明的

圓周率不是某一個人發明的,而是在歷史的程序中,不同的數學家經過無數次的演算得出的。古希臘大數學家阿基米德,開創了人類歷史上通過理論計算圓周率近似值的先河。公元480年左右,南北朝時期的數學家祖沖之,首次將 圓周率 精算到小數第七位。圓周率用希臘字母 讀作p i 表示,是一個常數 約等於3.14159...

張衡根據什么發明了圓周率,張衡根據什麼發明了圓周率

首先我得說,圓周率早在張衡之前就被人們認識了,周髀算經 裡就記載,圓周率應該是等於3 雖然準確率很低,但是時間很早!所以不是張衡發明的,也不是他首先發現的!其次,怎麼跟你說呢,圓周率是一個涉及離散和連續的問題。就是說,面積應該是一種連續量,而不是一種離散量。古代人們很早就發現,如果想要描述一個圓,最...

圓周率是如何計算匯出的,圓周率是如何計算匯出的

一個正n邊多邊形,中心到頂點距離為r,每個中心角可計算出為360 n,每條邊的長度可計算出為2 r sin 360 2 n 周長為2 n r sin 360 2 n 當n趨近於正無窮的時候,多邊形為圓,圓周率為周長除以直徑,所以圓周率可表示為 n趨近於正無窮時n sin 180 n 的值 正多邊形 ...