1樓:張天光小童鞋
從影象來看,制
周期函式會出現一段一段的相同的影象
從函式表示式來看,可以表示成f(x)=f(x+t)的形式,比如正弦函式f(x)=sin(x),則有f(x)=sin(x)=sin(x+2kπ)=f(x+2kπ)
其中k為整數,這表示2kπ為該函式的週期
2樓:匿名使用者
判定來一個函式是否為周期函式,源在高中數
學教材中,只能依據周期函式的定義:「對於函式,( ),如果存在一個非零常數 ,使得當 取定義域內的每一個值時都有f(x+t)=,( ).那麼函式f(x)就叫做周期函式,非零常數 叫做這個函式的週期」
3樓:弘玉蓉榮卿
設f(x)是定義在數集m上的
函式,如果存在非零常數t具有性質:f(x+t)=f(x);
則稱f(x)是數專集m上的周期函式屬,常數t稱為f(x)的一個週期。如果在所有正週期中有一個最小的,則稱它是函式f(x)的最小正週期。
怎麼判斷是不是周期函式 15
4樓:浪子_回頭
判斷周期函式的方法,一般是根據定義。即對函式f(x),如果存在常數t(t≠0),使得當x取定義域內的每一個值時,均有f(x+t)=f(x)成立,則稱f(x)是週期為t的周期函式【當然,任何一個常數kt(k∈z且k≠0)均為其週期】。
本題中,設y=xcosx=f(x),x∈r,假設f(x)是週期為t的周期函式,則f(x)=f(x+t)=(x+t)cos(x+t)=xcos(x+t)+tcos(x+t)=xcosx。顯然,只有t=0時,對任意x才能成立。故,y=xcosx不是周期函式。
5樓:無名
為什麼書上答案是周期函式,而樓主的答案為非周期函式
6樓:準狙神
同濟大學編的第七版17頁第8題的(4)?
7樓:匿名使用者
這是高數17頁對不對
怎麼判斷一個函式是不是周期函式
8樓:大二二大
一個函式是不是周期函式的判定定理
周期函式定理,一共分一下幾個型別。
定理1若f(x)是在集m上以t*為最小正週期的周期函式,則k f(x)+c(k≠0)和1/ f(x)分別是集m和集上的以t*為最小正週期的周期函式。
定理2若f(x)是集m上以t*為最小正週期的周期函式,則f(ax+n)是集上的以t*/ a為最小正週期的周期函式,(其中a、b為常數)。
定理3設f(u)是定義在集m上的函式,u=g(x)是集m1上的周期函式,且當x∈m1時,g(x)∈m,則複合函式f(g(x))是m1上的周期函式。
定理4設f1(x)、f2(x)都是集合m上的周期函式,t1、t2分別是它們的週期,若t1/t2∈q則它們的和差與積也是m上的周期函式,t1與t2的公倍 數為它們的週期。
定理5設f1(x)=sin a1x,f2(x)=cos a2x,則f1(x)與f2(x)之和、差、積是周期函式的充要條件是a1/a2∈q。
擴充套件資料:
定義設f(x)是定義在數集m上的函式,如果存在非零常數t具有性質:f(x+t)=f(x),則稱f(x)是數集m上的周期函式,常數t稱為f(x)的一個週期。如果在所有正週期中有一個最小的,則稱它是函式f(x)的最小正週期。
由定義可得:周期函式f(x)的週期t是與x無關的非零常數,且周期函式不一定有最小正週期,譬如狄利克雷函式。
性質周期函式的性質共分以下幾個型別:
(1)若t(≠0)是f(x)的週期,則-t也是f(x)的週期。
(2)若t(≠0)是f(x)的週期,則nt(n為任意非零整數)也是f(x)的週期。
(3)若t1與t2都是f(x)的週期,則t1±t2也是f(x)的週期。
(4)若f(x)有最小正週期t*,那麼f(x)的任何正週期t一定是t*的正整數倍。
(5)若t1、t2是f(x)的兩個週期,且t1/t2是無理數,則f(x)不存在最小正週期。
(6)周期函式f(x)的定義域m必定是至少一方無界的集合
判定方法
周期函式的判定方法分為以下幾步:
(1)判斷f(x)的定義域是否有界;
例:f(x)=cosx(≤10)不是周期函式。
(2)根據定義討論函式的週期性可知非零實數t在關係式f(x+t)= f(x)中是與x無關的,故討論時可通過解關於t的方程f(x+t)- f(x)=0,若能解出與x無關的非零常數t便可斷定函式f(x)是周期函式,若這樣的t不存在則f(x)為非周期函式。
例:f(x)=cosx^2 是非周期函式。
(3)一般用反證法證明。(若f(x)是周期函式,推出矛盾,從而得出f(x)是非周期函式)。
例:證f(x)=ax+b(a≠0)是非周期函式。
證:假設f(x)=ax+b是周期函式,則存在t(≠0),使之成立 ,a(x+t)+b=ax+b ax+at-ax=0,at=0 又a≠0,∴t=0與t≠0矛盾,∴f(x)是非周期函式。
例:證f(x)= ax+b是非周期函式。
證:假設f(x)是周期函式,則必存在t(≠0)對 ,有(x+t)= f(x),當x=0時,f(x)=0,但x+t≠0,∴f(x+t)=1,∴f(x+t) ≠f(x)與f(x+t)= f(x)矛盾,∴f(x)是非周期函式。
9樓:demon陌
判斷周期函式的方法,一般是根據定義。即對函式f(x),如果存在常數t(t≠0),使得當x取定義域內的每一個值時,均有f(x+t)=f(x)成立,則稱f(x)是週期為t的周期函式【當然,任何一個常數kt(k∈z且k≠0)均為其週期】。
本題中,設y=xcosx=f(x),x∈r,假設f(x)是週期為t的周期函式,則f(x)=f(x+t)=(x+t)cos(x+t)=xcos(x+t)+tcos(x+t)=xcosx。顯然,只有t=0時,對任意x才能成立。故,y=xcosx不是周期函式。
擴充套件資料:
周期函式的性質共分以下幾個型別:
(1)若t(≠0)是f(x)的週期,則-t也是f(x)的週期。
(2)若t(≠0)是f(x)的週期,則nt(n為任意非零整數)也是f(x)的週期。
(3)若t1與t2都是f(x)的週期,則t1±t2也是f(x)的週期。
(4)若f(x)有最小正週期t*,那麼f(x)的任何正週期t一定是t*的正整數倍。
(5)若t1、t2是f(x)的兩個週期,且t1/t2是無理數,則f(x)不存在最小正週期。
(6)周期函式f(x)的定義域m必定是至少一方無界的集合。
周期函式的判定方法分為以下幾步:
(1)判斷f(x)的定義域是否有界;
例:f(x)=cosx(≤10)不是周期函式。
(2)根據定義討論函式的週期性可知非零實數t在關係式f(x+t)= f(x)中是與x無關的,故討論時可通過解關於t的方程f(x+t)- f(x)=0,若能解出與x無關的非零常數t便可斷定函式f(x)是周期函式,若這樣的t不存在則f(x)為非周期函式。
例:f(x)=cosx^2 是非周期函式。
(3)一般用反證法證明。(若f(x)是周期函式,推出矛盾,從而得出f(x)是非周期函式)。
例:證f(x)=ax+b(a≠0)是非周期函式。
證:假設f(x)=ax+b是周期函式,則存在t(≠0),使之成立 ,a(x+t)+b=ax+b ax+at-ax=0,at=0 又a≠0,∴t=0與t≠0矛盾,∴f(x)是非周期函式。
例:證f(x)= ax+b是非周期函式。
證:假設f(x)是周期函式,則必存在t(≠0)對 ,有(x+t)= f(x),當x=0時,f(x)=0,但x+t≠0,∴f(x+t)=1,∴f(x+t) ≠f(x)與f(x+t)= f(x)矛盾,∴f(x)是非周期函式。
10樓:匿名使用者
設f(x)是定義在
數集m上的函式,如果存在非零常數t具有性質:f(x+t)=f(x),
則稱f(x)是數集m上的周期函式,常數t稱為f(x)的一個週期。如果在所有正週期中有一個最小的,則稱它是函式f(x)的最小正週期。
由定義可得:周期函式f(x)的週期t是與x無關的非零常數,且周期函式不一定有最小正週期。
方法:(1)若f(x)的定義域有界,[2]
例:f(x)=cosx(≤10)不是周期函式。
(2)根據定義討論函式的週期性可知非零實數t在關係式f(x+t)= f(x)中是與x無關的,故討論時可通過解關於t的方程f(x+t)- f(x)=0,若能解出與x無關的非零常數t便可斷定函式f(x)是周期函式,若這樣的t不存在則f(x)為非周期函式。
例:f(x)=cosx 是非周期函式。
(3)一般用反證法證明。(若f(x)是周期函式,推出矛盾,從而得出f(x)是非周期函式)。
例:證f(x)=ax+b(a≠0)是非周期函式。
證:假設f(x)=ax+b是周期函式,則存在t(≠0),使true ,a(x+t)+b=ax+b ax+at-ax=0 at=0 又a≠0,∴t=0與t≠0矛盾,∴f(x)是非周期函式。
例:證f(x)= 是非周期函式。
證:假設f(x)是周期函式,則必存在t(≠0)對 ,有(x+t)= f(x),當x=0時,f(x)=0,但x+t≠0,∴f(x+t)=1,∴f(x+t) ≠f(x)與f(x+t)= f(x)矛盾,∴f(x)是非周期函式。
例:證f(x)=sinx2是非周期函式
證:若f(x)= sinx2是周期函式,則存在t(>0),使之true ,有sin(x+t)2=sinx2,取x=0有sint2=sin0=0,∴t2=kπ(k∈z),又取x= t有sin(t+t)2=sin(t)2=sin2kπ=0,∴(+1)2
t2=lπ(l∈z+),∴
與3+2 是無理數矛盾,∴f(x)=sinx2是非周期函式。
11樓:刑儒澹臺英銳
看這個函式的曲線是不是呈週期性變化。可以用軟體輔助繪圖觀察。
12樓:康農繆迎曼
1、一開始還是要靠數學的推導,等積累了一定經驗,感覺才會起作用。
比如,書上說f(x+t)=f(x),t>0,則t為函式f(x)的週期
那麼,如果f(x+t)=f(x),但t<0,那麼函式是否是周期函式,週期是多少?其實f(x)=f[(x-t)+t]=f(x-t),於是立馬知道函式是周期函式,週期為-t
再來,如果f(x+t)=f(x-t),t>0,那麼函式是否是周期函式?用x+t代x,代入得f(x+2t)=f(x),於是函式為周期函式,週期為2t
接著來,如果f(x+a)=f(x-b),a、b都是正數,又如何?同樣,用x+b代x,得f(x+a+b)=f(x),週期為a+b
還來,如果f(x+a)=f(x+b)或f(x-a)=f(x-b),a、b都是正數,是否週期?你按照上面的方法自己練練吧
2、類似1/9、17/19這樣的分數,化為小數時,小數也必然呈現週期性
3、還有物理方法
比如物體滿足f=-kx,k>0,f為物體受的合外力,x為位移,則物體一定呈現簡諧運動,週期為2π
*根號(m/k),m為物體質量
怎樣判斷是不是初吻,如何判斷女朋友是不是初吻?
初吻,呵呵,第一次接吻完全不是享受接吻的感覺,而是對方幫心交給你了,才會讓你去吻他,而你在乎是不是初吻。是不是太那個了,這個沒有一定,bai畢竟有些是可以 du偽裝zhi的。正常初吻的話dao,一般女孩子比較羞澀,而專且沒有什麼經驗屬,會要緊牙不讓你入侵,當然也不完全都是這樣,女方主動的話,就不一樣...
怎麼判斷是不是夢啊,如何判斷自己是不是在夢中
你好 其實抄夢境和現實是襲有很大區別的。bai一般來說,當你想去du 判斷,想去懷疑自己是不是在zhi夢中dao,這情況下就是現實的。因為在夢中,輪不到你去懷疑,你也想不起去懷疑。當然也有例外。夢中知夢。是你在夢中的自主意識醒來,懷疑自己是不是在夢中。不過如果出現了夢中懷疑的夢的情況,你會馬上發現你...
如何判斷自己是不是得了肩周炎,如何判斷自己是不是得了肩周炎
怎麼判斷自己是不是凍結肩 症狀 1,疼痛是肩周炎最突出的症狀.初始疼痛症狀往往較輕,常因天氣變化或勞累而引發,逐漸發展為持續性疼痛,尤其是在肩關節內旋,後伸,上舉,外展等運動時更為明顯,甚至劇痛難忍.2,在休息時疼痛症狀也會加重,尤其是夜間睡眠時,嚴重者可夜不能寐,不能向患側壓肩側臥,3,肩關節活動...