二元一次函式最大值最小值公式是什麼

2021-03-03 20:34:13 字數 3675 閱讀 1546

1樓:匿名使用者

樓上的,你說的是一元二次函式。

樓主到底要問什麼。

2樓:匿名使用者

記a=fxx,b=fxy,c=yy,h=ac-b^2,h>0,a<0,極大值

h>0,a>0,極小值

h<0,無

h=0,需進一步判斷

^2表示平方

3樓:匿名使用者

y=ax^2+bx+c

當a>0

x=-b/2a時

y(min)=(4ac-b^2)/4a

當a<0

x=-b/2a時

y(max)=(4ac-b^2)/4a

4樓:水蘊邛霞月

y=ax^2+bx+c

當a>0

x=-b/2a時

y(min)=(4ac-b^2)/4a當a

求函式的最大值和最小值的方法。

5樓:藍藍藍

常見的求最值方法有:

1、配方法: 形如的函式

,根據二次函式的極值點或邊界點的取值確定函式的最值.

2、判別式法: 形如的分式函式, 將其化成係數含有y的關於x的二次方程.由於, ∴≥0, 求出y的最值, 此種方法易產生增根, 因而要對取得最值時對應的x值是否有解檢驗.

3、利用函式的單調性 首先明確函式的定義域和單調性, 再求最值.

4、利用均值不等式, 形如的函式, 及≥≤, 注意正,定,等的應用條件, 即: a, b均為正數, 是定值, a=b的等號是否成立.

5、換元法: 形如的函式, 令,反解出x, 代入上式, 得出關於t的函式, 注意t的定義域範圍, 再求關於t的函式的最值. 還有三角換元法, 引數換元法.

6、數形結合法 形如將式子左邊看成一個函式, 右邊看成一個函式, 在同一座標系作出它們的圖象, 觀察其位置關係, 利用解析幾何知識求最值. 求利用直線的斜率公式求形如的最值.

7、利用導數求函式最值2.首先要求定義域關於原點對稱然後判斷f(x)和f(-x)的關係:若f(x)=f(-x),偶函式;若f(x)=-f(-x),奇函式。

如:函式f(x)=x^3,定義域為r,關於原點對稱;而f(-x)=(-x)^3=-x^3=-f(x),所以f(x)=x^3是奇函式.又如:

函式f(x)=x^2,定義域為r,關於原點對稱;而f(-x)=(-x)^2=x^2=f(x),所以f(x)=x^3是偶函式.

擴充套件資料:

一般的,函式最值分為函式最小值與函式最大值。簡單來說,最小值即定義域中函式值的最小值,最大值即定義域中函式值的最大值。

函式最大(小)值的幾何意義——函式影象的最高(低)點的縱座標即為該函式的最大(小)值。

最小值設函式y=f(x)的定義域為i,如果存在實數m滿足:1對於任意實數x∈i,都有f(x)≥m,2存在x0∈i。使得f (x0)=m,那麼,我們稱實數m 是函式y=f(x)的最小值。

最大值設函式y=f(x)的定義域為i,如果存在實數m滿足:1對於任意實數x∈i,都有f(x)≤m,2存在x0∈i。使得f (x0)=m,那麼,我們稱實數m 是函式y=f(x)的最大值。

一次函式

一次函式(linear function),也作線性函式,在x,y座標軸中可以用一條直線表示,當一次函式中的一個變數的值確定時,可以用一元一次方程確定另一個變數的值。

所以,無論是正比例函式,即:y=ax(a≠0) 。還是普通的一次函式,即:

y=kx+b (k為任意不為0的常數,b為任意實數),只要x有範圍,即z《或≤x<≤m(要有意義),那麼該一次函式就有最大或者最小或者最大最小都有的值。而且與a的取值範圍有關係

當a<0時

當a<0時,則y隨x的增大而減小,即y與x成反比。則當x取值為最大時,y最小,當x最小時,y最大。例:

2≤x≤3 則當x=3時,y最小,x=2時,y最大

當a>0時

當a>0時,則y隨x的增大而增大,即y與x成正比。則當x取值為最大時,y最大,當x最小時,y最小。例:

2≤x≤3 則當x=3時,y最大,x=2時,y最小 [3]

二次函式

一般地,我們把形如y=ax^2+bx+c(其中a,b,c是常數,a≠0)的函式叫做二次函式(quadratic function),其中a稱為二次項係數,b為一次項係數,c為常數項。x為自變數,y為因變數。等號右邊自變數的最高次數是2。

注意:「變數」不同於「未知數」,不能說「二次函式是指未知數的最高次數為二次的多項式函式」。

「未知數」只是一個數(具體值未知,但是隻取一個值),「變數」可在一定範圍內任意取值。在方程中適用「未知數」的概念(函式方程、微分方程中是未知函式,但不論是未知數還是未知函式,一般都表示一個數或函式——也會遇到特殊情況),

但是函式中的字母表示的是變數,意義已經有所不同。從函式的定義也可看出二者的差別.如同函式不等於函式關係。

而二次函式的最值,也和一次函式一樣,與a扯上了關係。

當a<0時,則影象開口於y=2x2 y=1⁄2x2一樣,則此時y 有最大值,且y只有最大值(聯絡影象和二次函式即可得出結論)

此時y值等於頂點座標的y值

當a>0時,則影象開口於y=-2x2 y=-1⁄2x2一樣,則此時y 有最小值,且y只有最小值(聯絡影象和二次函式即可得出結論)

此時y值等於頂點座標的y值

6樓:匿名使用者

求函式的最大值和最小值的方法,這個題賊請老師給解答一下吧,我答不上來呀,謝謝老師吧!

7樓:麥平樂扶宕

有好多呢,單調性法,配方法,換元法,利用已知函式求值域,還可利用判別式來求,但最普遍的方法是求導.

8樓:萬家燈火

求函式的最大值與最小值的方法需要掌握技巧是很簡單的

9樓:匿名使用者

畫出影象,即可看出最

小值是頂點的縱座標軸,無最小值選畫圖,你會發現y=1/x在(0,+無窮大)是減函式,則在x∈[1,3]上仍是減函式,在x=1時取最大值,在x=3時取最小值,可以通過畫圖,單調性,及求導的方法

10樓:匿名使用者

[小花]求函式最大值和最小值,學霸教你用配方法,8年級數學

11樓:玉麒麟大魔王

求函式最大值和最小值的方法是函式找一數學老師吧。

12樓:米宜章白風

二次函式,主要看二次項係數,大於0,有最小值,小於0,有最大值。

求函式的最大最小值方法可以用公式,4a分子4ac-b方。或者用配方法。

13樓:戎宸在密思

將函式變形為,由於分母,可得函式的定義域為.對分類討論:當時,原式變為,可得得.當時,上式對於任意實數都成立,可得,解出即可.

解:將函式變形為,

分母,函式的定義域為.

當時,原式變為,解得.因此也滿足題意.

當時,上式對於任意實數都成立,因此,

化為,解得,且.

綜上可知:.

當時,函式取得最大值;

當時,函式取得最小值.

本題考查了利用"判別式法"求分式型別函式的最值,考查了推理能力和計算能力,考查了分類討論的思想方法,屬於難題.

14樓:匿名使用者

先像初中一樣,配成頂點式,即y=a(x-k)^2+b

其頂點就是(k,b),然後根據函式的單調性,在頂點處取得最大或最小值。

二元一次函式中的a代表什麼b代表什麼c代表什麼

沒有必要推a和b的關係 對於y ax bx c形式的二次函式 可以看到當x 1時,y a b c 當x 1時,y a b c 當x 2時,y 4a 2b c 因此a b c a b c和4a 2b c的值就是函式在x 1 x 1和x 2時的函式值 通過影象觀察,當x 1時,函式影象在x軸下方,因此函...

一次函式的影象怎麼畫,三元一次函式影象怎麼畫

一次函式的圖象來為直線,由於兩自點確定 一條直線bai,所以只要過直線上的兩個點作du直線就是該一次zhi函式的圖dao象了.例如 作出一次函式y 2x 6的圖象.當x 0時,y 2 0 6 6 當y 0時,0 2x 6,x 3.所以,過點 0,6 和 3,0 作直線即為y 2x 6的直線.注 在上...

二元一次方程,二元一次方程

設參加聚會的代表有x人,則每人握了 x 1 次手,x個人總共就握了x x 1 次手,每一次握手算了兩遍,所以總次數為1 2x x 1 次,由此可以列出方程 1 2x x 1 45 解得 x1 10,x2 9 捨去 答 參加聚會的代表有10人。解 設共有x個人.2 45 x x 1 45 2 x x ...