1樓:似水wj流年
三角函式公式表
同角三角函式的基本關係式
倒數關係: 商的關係: 平方關係:
tanα ·cotα=1
sinα ·cscα=1
cosα ·secα=1 sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα sin2α+cos2α=1
1+tan2α=sec2α
1+cot2α=csc2α
(六邊形記憶法:圖形結構「上弦中切下割,左正右餘中間1」;記憶方法「對角線上兩個函式的積為1;陰影三角形上兩頂點的三角函式值的平方和等於下頂點的三角函式值的平方;任意一頂點的三角函式值等於相鄰兩個頂點的三角函式值的乘積。」)
誘導公式(口訣:奇變偶不變,符號看象限。)
sin(-α)=-sinα
cos(-α)=cosα tan(-α)=-tanα
cot(-α)=-cotα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
cot(2kπ+α)=cotα
(其中k∈z)
兩角和與差的三角函式公式 萬能公式
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβ
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
tanα+tanβ
tan(α+β)=——————
1-tanα ·tanβ
tanα-tanβ
tan(α-β)=——————
1+tanα ·tanβ
2tan(α/2)
sinα=——————
1+tan2(α/2)
1-tan2(α/2)
cosα=——————
1+tan2(α/2)
2tan(α/2)
tanα=——————
1-tan2(α/2)
半形的正弦、餘弦和正切公式 三角函式的降冪公式
二倍角的正弦、餘弦和正切公式 三倍角的正弦、餘弦和正切公式
sin2α=2sinαcosα
cos2α=cos2α-sin2α=2cos2α-1=1-2sin2α
2tanα
tan2α=—————
1-tan2α
sin3α=3sinα-4sin3α
cos3α=4cos3α-3cosα
3tanα-tan3α
tan3α=——————
1-3tan2α
三角函式的和差化積公式 三角函式的積化和差公式
α+β α-β
sinα+sinβ=2sin———·cos———
2 2α+β α-β
sinα-sinβ=2cos———·sin———
2 2α+β α-β
cosα+cosβ=2cos———·cos———
2 2α+β α-β
cosα-cosβ=-2sin———·sin———
2 2 1
sinα ·cosβ=-[sin(α+β)+sin(α-β)]
2 1
cosα ·sinβ=-[sin(α+β)-sin(α-β)]
2 1
cosα ·cosβ=-[cos(α+β)+cos(α-β)]
2 1
sinα ·sinβ=— -[cos(α+β)-cos(α-β)]
2 化asinα ±bcosα為一個角的一個三角函式的形式(輔助角的三角函式的公式
集合、函式
集合 簡單邏輯
任一x∈a x∈b,記作a b
a b,b a a=b
a b=
a b=
card(a b)=card(a)+card(b)-card(a b)
(1)命題
原命題 若p則q
逆命題 若q則p
否命題 若 p則 q
逆否命題 若 q,則 p
(2)四種命題的關係
(3)a b,a是b成立的充分條件
b a,a是b成立的必要條件
a b,a是b成立的充要條件
函式的性質 指數和對數
(1)定義域、值域、對應法則
(2)單調性
對於任意x1,x2∈d
若x1<x2 f(x1)<f(x2),稱f(x)在d上是增函式
若x1<x2 f(x1)>f(x2),稱f(x)在d上是減函式
(3)奇偶性
對於函式f(x)的定義域內的任一x,若f(-x)=f(x),稱f(x)是偶函式
若f(-x)=-f(x),稱f(x)是奇函式
(4)週期性
對於函式f(x)的定義域內的任一x,若存在常數t,使得f(x+t)=f(x),則稱f(x)是周期函式 (1)分數指數冪
正分數指數冪的意義是
負分數指數冪的意義是
(2)對數的性質和運演算法則
loga(mn)=logam+logan
logamn=nlogam(n∈r)
指數函式 對數函式
(1)y=ax(a>0,a≠1)叫指數函式
(2)x∈r,y>0
圖象經過(0,1)
a>1時,x>0,y>1;x<0,0<y<1
0<a<1時,x>0,0<y<1;x<0,y>1
a> 1時,y=ax是增函式
0<a<1時,y=ax是減函式 (1)y=logax(a>0,a≠1)叫對數函式
(2)x>0,y∈r
圖象經過(1,0)
a>1時,x>1,y>0;0<x<1,y<0
0<a<1時,x>1,y<0;0<x<1,y>0
a>1時,y=logax是增函式
0<a<1時,y=logax是減函式
指數方程和對數方程
基本型logaf(x)=b f(x)=ab(a>0,a≠1)
同底型logaf(x)=logag(x) f(x)=g(x)>0(a>0,a≠1)
換元型 f(ax)=0或f (logax)=0
數列 數列的基本概念 等差數列
(1)數列的通項公式an=f(n)
(2)數列的遞推公式
(3)數列的通項公式與前n項和的關係
an+1-an=d
an=a1+(n-1)d
a,a,b成等差 2a=a+b
m+n=k+l am+an=ak+al
等比數列 常用求和公式
an=a1qn_1
a,g,b成等比 g2=ab
m+n=k+l aman=akal
不等式不等式的基本性質 重要不等式
a>b b<a
a>b,b>c a>c
a>b a+c>b+c
a+b>c a>c-b
a>b,c>d a+c>b+d
a>b,c>0 ac>bc
a>b,c<0 ac<bc
a>b>0,c>d>0 ac<bd
a>b>0 dn>bn(n∈z,n>1)
a>b>0 > (n∈z,n>1)
(a-b)2≥0
a,b∈r a2+b2≥2ab
|a|-|b|≤|a±b|≤|a|+|b|
證明不等式的基本方法
比較法(1)要證明不等式a>b(或a<b),只需證明
a-b>0(或a-b<0=即可
(2)若b>0,要證a>b,只需證明 ,
要證a<b,只需證明
綜合法 綜合法就是從已知或已證明過的不等式出發,根據不等式的性質推匯出欲證的不等式(由因導果)的方法。
分析法 分析法是從尋求結論成立的充分條件入手,逐步尋求所需條件成立的充分條件,直至所需的條件已知正確時為止,明顯地表現出「持果索因」
複數 代數形式 三角形式
a+bi=c+di a=c,b=d
(a+bi)+(c+di)=(a+c)+(b+d)i
(a+bi)-(c+di)=(a-c)+(b-d)i
(a+bi)(c+di )=(ac-bd)+(bc+ad)i
a+bi=r(cosθ+isinθ)
r1=(cosθ1+isinθ1)•r2(cosθ2+isinθ2)
=r1•r2〔cos(θ1+θ2)+isin(θ1+θ2)〕
〔r(cosθ+sinθ)〕n=rn(cosnθ+isinnθ)
k=0,1,……,n-1
解析幾何
1、直線
兩點距離、定比分點 直線方程
|ab|=| |
|p1p2|=
y-y1=k(x-x1)
y=kx+b
兩直線的位置關係 夾角和距離
或k1=k2,且b1≠b2
l1與l2重合
或k1=k2且b1=b2
l1與l2相交
或k1≠k2
l2⊥l2
或k1k2=-1 l1到l2的角
l1與l2的夾角
點到直線的距離
2.圓錐曲線
圓 橢 圓
標準方程(x-a)2+(y-b)2=r2
圓心為(a,b),半徑為r
一般方程x2+y2+dx+ey+f=0
其中圓心為( ),
半徑r(1)用圓心到直線的距離d和圓的半徑r判斷或用判別式判斷直線與圓的位置關係
(2)兩圓的位置關係用圓心距d與半徑和與差判斷 橢圓
焦點f1(-c,0),f2(c,0)
(b2=a2-c2)
離心率準線方程
焦半徑|mf1|=a+ex0,|mf2|=a-ex0
雙曲線 拋物線
雙曲線焦點f1(-c,0),f2(c,0)
(a,b>0,b2=c2-a2)
離心率準線方程
焦半徑|mf1|=ex0+a,|mf2|=ex0-a 拋物線y2=2px(p>0)
焦點f準線方程
座標軸的平移
這裡(h,k)是新座標系的原點在原座標系中的座標
高中數學必修幾最難人教版A,人教版高中各科必修幾是最難的?我現在高一,有的書學到了必修三,數學學到了必修五。老師說數學物理越學
本人認為數列是比較難的 必修五 一般高考最難的大題都是數列 然後必修一函式是最重要的 包括必修四的三角函式 還有選修1 1的圓錐曲線也有些難度啦 對於本人來說必修二的幾何是學的最簡單的啦 至於必修三也沒什麼太大難度,只是套公式就行了。其實數學只要多做了,什麼都不會是顯得太難 嘻嘻 個人認為難易順序是...
高中數學必修4哪個最難,高中數學必修124哪個最難
沒有哪個最難,只要你對它有興趣,就感覺不難,反之,你就感覺個個都難 高一數學必修1 2 4。是不是必修4最簡單,必修1最難?必修系列都是些基礎知識,就高考來看都是 送分題 真正難的在選修,圓錐曲線和導數是送命題 高中數學必修1 5,最簡單和最難的分別是哪本?概率那本應該是最簡單的,其他的都差不多,用...
高中數學必修1和必修2哪簡單,高中數學必修1和必修2是什麼意思
必修1必修2都可以衍生到很難的題,我們當初做的嚇死人,但是不知道你們用什麼卷,所以可以很簡單 高中數學必修1和必修2是什麼意思 必修1 必修2 就是課本的名字 我沒記錯的話 必修一應該是教你集合 奇函式 偶函式 之類的 必修二應該是教你如何建立直角座標系 解析幾何之類的 必修就是必須要學的書,高一的...