1樓:未來之希望
如下圖所示,手寫不易,謝謝
2樓:匿名使用者
由題來設,r(a*)=1,所以r(a)=n-1,所以ax=0的基礎解系自
中只有一個非零解向量。
對方程組a*x=b兩邊左乘以矩陣a,得
aa*x=ab
即|a|x=ab
因為r(a)=n-1,所以|a|=0
所以ab=0,可見x=b是ax=0的一個非零解。故ax=0的通解為x=kb(k為任意常數)。
當然,由於基礎解系不是唯一的,也可以取x=a*r作為基礎解系。
3樓:歲月永恆
大學的高數,早就還給老師了,現在不會了,不好意思
4樓:趙
我也才上大學,請教過學姐,學姐說要準備兩個本子,一個記筆記,一個記例題,不需要大量刷題,要注意預習與複習
5樓:大廣高速路
閉著眼睛。。。。。。 瞎 做 吧。
大學高數該怎麼學?
6樓:經貿系
學校開學後,教材書就發下來了,上課時,如果聽不懂老師說的,就自己看教材,這一次看教材,是要理解。當然,能聽懂老師說的最好。
課後時,老師一般會勾課後的練習題給你們做,做題的過程中,還不明白的地方就重新找一下教材的相關知識點來看一下。做錯的或覺得有意思的題目,做一下標記
高數除了教材,還有一本學習指導書。做完老師的作業後,就把這本學習指導書看一下,特別是考點例題的,每個章節的最後,都有練習題,也可以做一下。同樣,做錯的題目,也可以標記一下
臨近期末考試的時候,最後不要缺課,因為這時候,老師一般都會在課堂上劃考點,劃重點,劃考試範圍。對這些內容,你也是要做好記號的
大學高等數學要怎麼才能學好呢?
7樓:百度文庫精選
最低0.27元開通文庫會員,檢視完整內
原發布者:565000240
如何學好高數大學高數,有的同學聽了就說腦袋疼。其實高數並沒有那麼可怕。首先我們應該克服自己的心理障礙。
不要聽學長們說高數怎麼難怎麼不好學。特別是我們文科生,和理科生相比我們的確沒有很好的基礎。其實這都不是問題,對於我們來說都是同樣地起點。
其實高數並非想象的那麼不可高攀,最關鍵的是要注意學習方法,而高數一和高數二的學習又有所不同,下面具體介紹我的對學習高數的技巧。有的方法適用於自學的有的適用於聽課的,請同學們根據自己的情況高數一,首先要有紮實的基本功因為高數一主要是微積分,它實際是有關函式的各種運算。所以首先就是熟悉各種函式的性質、運算等,這些內容都是高中課本上的內容,在高數一書本上只是簡單介紹而已。
我有兩種方法學習高數,一種就是花大量的時間去實行題海戰術,這種是上高中時候的方法,到大學我試過並不是很適合我們大學生。二就是熟練掌握知識點。並不是死記硬背,而是能很好的領會其中意思。
其實題海戰術目的就是熟練地掌握知識點得過程。與其花那麼長得時間去做題,還不如掌握知識點。有些知識點很抽象,書上一定有相關的例題,結合例題更有助於理解和記憶。
有關指數函式、冪函式、對數函式、三角函式等一定要很熟練,否則要想學好高數可能就需要很多時間了。對於大學考試來說,出的題不是很難,都是一些基本的知識,只要你掌握了每個知識點,那麼你就邁出樂學好高數的第一步。在有較紮實的基礎後,現在可以開始學習高數了。
因為高數
8樓:布嘎嘎拉
1.高數一(或工專),首先要有紮實的基本功。如果中學的知識全還給老師的話,建議你先看看中學的書,特別是有關指數函式、冪函式、對數函式、三角函式等一定要很熟。
2.高數一各章是相互關聯層層推進的,每一章都是後一章的基礎,所以學習時一定要按部就班,只有將這一章真正搞懂了才可進入下一章學習,切忌為求快而去速學 3.要學好高等數學最基本的就是要做好課前預習,做好課堂筆記及講究解題的方法、做好課後的複習。
這三個步驟是學好高等數學的重要環節。 4.高數二要加強基本概念的理解,並能掌握書本上的基本例題即可,不需舉一反三,考試題目特別是概率的大題大多千篇一律,無非就是將書上例題數字改一改而已,所以不需做大量題,只需將書上題目「真正」會做即可。
因此,在學習過程中,一定要將每一章內容、概念、定理等真正理解,這可以通過多看幾遍書來達到。 5. 看書時一定要靜下心來,因為高數二內容較難理解,當看不下去時一定不要放棄,要硬著頭皮往下讀。
這裡要注意一點的是,高數二中可能會有很多對定理、推論的證明過程,這些證明過程又長又複雜,建議大家對這些證明過程可以不用去看,只需捉住精華---定理、推論,好好理解它們就可以了。 總得說來,高數一內容好象少點,也不難理解,但由於變化多端,且相互聯絡緊密,故出題多樣,且一道題可能涉及到好幾章內容,所以更難點。而高數二,內容較多,也很難理解,但出題簡單,題目比較單一,並且有可能都見過。
對它們的學習,很精闢的一句話:高數一,多做題;高數二,多看書理解!
9樓:匿名使用者
摒棄中學的學習方法,儘快適應現有的學習環
境;注意中學數學和《高等數學》的區別與聯絡;
中學數學課程的中心是從具體數學到概念化數學的轉變。高等數學首先要做的是幫助學生髮展函式概念——變數間關係的表述方式。
儘快適應《高等數學》課程的教學特點;
堅持做到,課前預習,課上聽講,課後複習,認真完成作業,課後對所學的知識進行歸納總結,加深對所學內容的理解,從而也就掌握了所學的知識,就不難學好高等數學這門課。
掌握正確的學習方法:
(1)要勤學、善思、多練。
(2)狠抓基礎,循序漸進。
(3)歸類小結,從厚到薄。
(4)精讀一本參考書。
(5)注意學習效率。
(6)掌握學習規律。
關於 《高等數學》的知識延展:
簡介:
指相對於初等數學而言,數學的物件及方法較為繁雜的一部分。
廣義地說,初等數學之外的數學都是高等數學,也有將中學較深入的代數、幾何以及簡單的集合論初步、邏輯初步稱為中等數學的,將其作為中小學階段的初等數學與大學階段的高等數學的過渡。
通常認為,高等數學是由微積分學,較深入的代數學、幾何學以及它們之間的交叉內容所形成的一門基礎學科。
主要內容包括:極限、微積分、空間解析幾何與線性代數、級數、常微分方程。
工科、理科研究生考試的基礎科目。
在中國理工科各類專業的學生(數學專業除外,數學專業學數學分析),學的數學較難,課本常稱「高等數學」;文史科各類專業的學生,學的數學稍微淺一些,課本常稱「微積分」。理工科的不同專業,文史科的不同專業,深淺程度又各不相同。研究變數的是高等數學,可高等數學並不只研究變數。
至於與「高等數學」相伴的課程通常有:線性代數(數學專業學高等代數),概率論與數理統計(有些數學專業分開學)。
初等數學研究的是常量與勻變數,高等數學研究的是非勻變數。高等數學(它是幾門課程的總稱)是理、工科院校一門重要的基礎學科,也是非數學專業理工科專業學生的必修數學課,也是其它某些專業的必修課。
作為一門基礎科學,高等數學有其固有的特點,這就是高度的抽象性、嚴密的邏輯性和廣泛的應用性。抽象性和計算性是數學最基本、最顯著的特點,有了高度抽象和統一,我們才能深入地揭示其本質規律,才能使之得到更廣泛的應用。嚴密的邏輯性是指在數學理論的歸納和整理中,無論是概念和表述,還是判斷和推理,都要運用邏輯的規則,遵循思維的規律。
所以說,數學也是一種思想方法,學習數學的過程就是思維訓練的過程。人類社會的進步,與數學這門科學的廣泛應用是分不開的。尤其是到了現代,電子計算機的出現和普及使得數學的應用領域更加拓寬,現代數學正成為科技發展的強大動力,同時也廣泛和深入地滲透到了社會科學領域。
怎麼快速學好大學高等數學高數1?
10樓:匿名使用者
哇,上面的說了這麼多,如果看完,你也都可以看完一章的高數一了(呵呵,開個玩笑)其實,高數一主要是微積分,它實際是有關函式的各種運算,因此需要學習者熟悉各種函式的性質、運算等,這些基本都是高中課本上的內容,在高數一的書本上只是簡單介紹而已。個人覺得,學好高數一首先要具備紮實的基本功。特別是有關指數函式、冪函式、對數函式、三角函式等章節一定要熟悉,最好能夠將這些基本函式的各種性質、運算總結歸納成一張**,方便查詢和使用,否則要想學好高數一可能會耗費很多時間。
其次就是多看書,多做題目。由於高數一各章是相互關聯、層層推進的,每一章都是後一章的基礎,所以學習時一定要按部就班,只有將前一章真正搞懂了才可進入下一章學習,切忌為求快而去速學,否則將不懂的問題越積越多,會導致自學者的心態越來越煩躁,直至中途放棄。學習高數,信心很重要,千萬不要被一時的困難而嚇到了,一定要堅持!
祝你學習進步!
11樓:匿名使用者
想要快速學好高數基礎 建議用高職院校的書 定義容易懂基本求導公式啊 就是公式 建議用高職院校的書 定義容易懂 題目 簡單
12樓:匿名使用者
這個急不來的、弱弱的問一句,你以前高數基礎好不好?個人認為基礎牢固了才能接受後面高難度的
13樓:桀驁不馴的王子
記公式微積分公式一堆,練習冊上題目隨便練練就ok了
如何學習大學高等數學?
14樓:匿名使用者
摒棄中學的學習方法,儘快適應現有的學習環境;
注意中學數學和《高等數學》的區別與聯絡;
中學數學課程的中心是從具體數學到概念化數學的轉變。高等數學首先要做的是幫助學生髮展函式概念——變數間關係的表述方式。
儘快適應《高等數學》課程的教學特點;
堅持做到,課前預習,課上聽講,課後複習,認真完成作業,課後對所學的知識進行歸納總結,加深對所學內容的理解,從而也就掌握了所學的知識,就不難學好高等數學這門課。
掌握正確的學習方法:
(1)要勤學、善思、多練。
(2)狠抓基礎,循序漸進。
(3)歸類小結,從厚到薄。
(4)精讀一本參考書。
(5)注意學習效率。
(6)掌握學習規律。
關於 《高等數學》的知識延展:
簡介:
指相對於初等數學而言,數學的物件及方法較為繁雜的一部分。
廣義地說,初等數學之外的數學都是高等數學,也有將中學較深入的代數、幾何以及簡單的集合論初步、邏輯初步稱為中等數學的,將其作為中小學階段的初等數學與大學階段的高等數學的過渡。
通常認為,高等數學是由微積分學,較深入的代數學、幾何學以及它們之間的交叉內容所形成的一門基礎學科。
主要內容包括:極限、微積分、空間解析幾何與線性代數、級數、常微分方程。
工科、理科研究生考試的基礎科目。
在中國理工科各類專業的學生(數學專業除外,數學專業學數學分析),學的數學較難,課本常稱「高等數學」;文史科各類專業的學生,學的數學稍微淺一些,課本常稱「微積分」。理工科的不同專業,文史科的不同專業,深淺程度又各不相同。研究變數的是高等數學,可高等數學並不只研究變數。
至於與「高等數學」相伴的課程通常有:線性代數(數學專業學高等代數),概率論與數理統計(有些數學專業分開學)。
初等數學研究的是常量與勻變數,高等數學研究的是非勻變數。高等數學(它是幾門課程的總稱)是理、工科院校一門重要的基礎學科,也是非數學專業理工科專業學生的必修數學課,也是其它某些專業的必修課。
作為一門基礎科學,高等數學有其固有的特點,這就是高度的抽象性、嚴密的邏輯性和廣泛的應用性。抽象性和計算性是數學最基本、最顯著的特點,有了高度抽象和統一,我們才能深入地揭示其本質規律,才能使之得到更廣泛的應用。嚴密的邏輯性是指在數學理論的歸納和整理中,無論是概念和表述,還是判斷和推理,都要運用邏輯的規則,遵循思維的規律。
所以說,數學也是一種思想方法,學習數學的過程就是思維訓練的過程。人類社會的進步,與數學這門科學的廣泛應用是分不開的。尤其是到了現代,電子計算機的出現和普及使得數學的應用領域更加拓寬,現代數學正成為科技發展的強大動力,同時也廣泛和深入地滲透到了社會科學領域。
大學的高數很難學嗎,大學的高數是不是很難?
大學的高數難不難在於自己 學習成績的好壞,往往取決於是否有良好的學習習慣,特別是思考習慣。一 總是站在系統的高度把握知識 很多同學在學習中習慣於跟著老師一節一節的走,一章一章的學,不太對意章節與學科整體系統之間的關係,只見樹木,不見森林。隨著時間推移,所學知識不斷增加,就會感到內容繁雜 頭緒不清,記...
高數,這個怎麼做,高數,這個怎麼做
哇,上面的說了這麼多,抄如果看完,你也都bai可以看完一章du 的高數一了 呵呵,開個zhi 玩笑 其實,dao高數一主要是微積分,它實際是有關函式的各種運算,因此需要學習者熟悉各種函式的性質 運算等,這些基本都是高中課本上的內容,在高數一的書本上只是簡單介紹而已。個人覺得,學好高數一首先要具備紮實...
重慶大學高數掛了,重慶大學關於高數重修的問題
看開一點吧,沒你想的那麼嚴重 關於幾個我知道答案的問題解答如下 版1 沒用,補考最高算 權60分。2 獎學金只是這個學期不能評了,下學期努力把績點提上去還是可以申請的 3 評優什麼的差不多同獎學金,還有就是平時參加的活動也會加分。4 可以刷分,僅對有出國留學打算的同學才有效。5 能入黨,只不過可能會...