1樓:匿名使用者
兩個矩陣乘積為零,並不能說明其中有一個矩陣為零。例如a=(1,1)^t,b=(1,-1)^t,則atb=0,但兩個矩陣都非零。
向量a乘以向量b =
2樓:忘洛心
向量a乘以向量b 的結果有以下三種:
1、向量a 乘以 向量b = (向量a得模長) 乘以 (向量b的模長) 乘以 cosα [α為2個向量的夾角]
2、向量a(x1,y1) 向量b(x2,y2)
3、向量a 乘以 向量b =(x1*x2,y1*y2)
注意:所有的乘法運算均為點乘。
關於向量運算的相關知識:
向量的記法:印刷體記作粗體的字母(如a、b、u、v),書寫時在字母頂上加一小箭頭「→」。 [1] 如果給定向量的起點(a)和終點(b),可將向量記作ab(並於頂上加→)。
在空間直角座標系中,也能把向量以數對形式表示,例如oxy平面中(2,3)是一向量。
在加法中:
設a=(x1,y1),b=(x2,y2),則a+b=(x1+x2,y1+y2)
向量加法的運算律:
交換律:a+b=b+a;
結合律:(a+b)+c=a+(b+c)。
在減法中:
如果a、b是互為相反的向量,那麼a=-b,b=-a,a+b=0. 0的反向量為0
oa-ob=ba.即「共同起點,指向被減」
a=(x1,y1),b=(x2,y2) ,則a-b=(x1-x2,y1-y2).
如圖:c=a-b 以b的結束為起點,a的結束為終點。
加減變換律:a+(-b)=a-b
在數乘中:
實數λ和向量a的叉乘乘積是一個向量,記作λa,且|λa|=|λ|*|a|。
當λ>0時,λa的方向與a的方向相同;當λ<0時,λa的方向與a的方向相反;當λ=0時,λa=0,方向任意。當a=0時,對於任意實數λ,都有λa=0。
當 |λ| >1時,表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上伸長為原來的|λ|倍
當|λ|<1時,表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上縮短為原來的 |λ|倍。
實數p和向量a的點乘乘積是一個數。
數與向量的乘法滿足下面的運算律
結合律:(λa)·b=λ(a·b)=(a·λb)。
向量對於數的分配律(第一分配律):(λ+μ)a=λa+μa.
數對於向量的分配律(第二分配律):λ(a+b)=λa+λb.
數乘向量的消去律:
① 如果實數λ≠0且λa=λb,那麼a=b。
② 如果a≠0且λa=μa,那麼λ=μ。
注意:向量的加減乘(向量沒有除法)運算滿足實數加減乘運演算法則。
在數量積中:
定義:已知兩個非零向量a,b,作oa=a,ob=b,則∠aob稱作向量a和向量b的夾角,記作θ並規定0≤θ≤π
若a、b共線,則
向量的數量積的座標表示為:a·b=x·x'+y·y'。
向量的數量積的運算律:
a·b=b·a(交換律)
(λa)·b=λ(a·b)(關於數乘法的結合律)
(a+b)·c=a·c+b·c(分配律)
3樓:憶安顏
點乘設向量
a=(x1,y1),向量b=(x2,y2)向量a·向量b=|向量a||向量b|cosu=x1x2+y1y2(數值u為向量a、向量b之間夾角)。
叉乘向量a×向量b=(x1y2i,x2y2j)向量向量方向符合右手法則。
|向量a×向量b|=|向量a||向量b|sinu拓展資料在數學中,向量(也稱為歐幾里得向量、幾何向量、向量),指具有大小(magnitude)和方向的量。它可以形象化地表示為帶箭頭的線段。箭頭所指:
代表向量的方向;線段長度:代表向量的大小。與向量對應的只有大小,沒有方向的量叫做數量(物理學中稱標量)。
向量的加法滿足平行四邊形法則和三角形法則。
ob+oa=oc。
a+b=(x+x',y+y')。
a+0=0+a=a。
向量加法的運算律:
交換律:a+b=b+a;
結合律:(a+b)+c=a+(b+c)。
4樓:叫那個不知道
①=a的模×b的模×ab向量夾角的餘弦值
②或者設向量a=(x1,y1)向量b=(x2,y2)則積=[(x1*x2)+(y1+y2)]/[《x²1+y²i》*《x²2+y²2》] (《》代表二次根
擴充套件資料
向量的向量積性質:
|a×b|是以a和b為邊的平行四邊形面積。
a×a=0。
a平行b〈=〉a×b=0
向量的向量積運算律
a×b=-b×a
(λa)×b=λ(a×b)=a×(λb)
a×(b+c)=a×b+a×c.
(a+b)×c=a×c+b×c.
上兩個分配律分別稱為左分配律和右分配律。在演算中應注意不能交換「×」號兩側向量的次序。
注:向量沒有除法,「向量ab/向量cd」是沒有意義的。
參考資料
5樓:登笑容舒璞
向量a(x1,y1)+向量b(x2,y2)=(x1+x2,y1+y2)
向量相加有個三角形法則,比如你假設向量a、b都是起於座標原點,向量c是他們的和,用三角形法則可知,c=(x1+x2,y1+y2),所以向量相加,就是座標相加
6樓:毛金龍醫生
也就是向量內積(.)與外積(×)的區別,
a.b=|a||b|cos 內積後得到標量
|a×b| = |a||b|sin 外積後得到向量,方向由右手法則確定.
兩個向量相乘
7樓:我是一個麻瓜啊
兩個向量相乘有兩種形式:叉積和點積。
(1)向
量叉積=向量的模乘以向量夾角的正弦值;
向量叉積的方向:a向量與b向量的向量積的方向與這兩個向量所在平面垂直,且遵守右手定則。(一個簡單的確定滿足「右手定則」的結果向量的方向的方法是這樣的:
若座標系是滿足右手定則的,當右手的四指從a以不超過180度的轉角轉向b時,豎起的大拇指指向是c的方向。)
(2)向量點積=向量的模乘以向量夾角的餘弦值。
向量叉積a×b=|a||b|sin,向量點積a·b=|a||b|cos。
8樓:韓增民鬆
二個向量
的數積有二種表達形式
1、設向量a=(x1,y1),向量b=(x2,y2)向量a•向量b =|向量a|*|向量b|*cos《向量a,向量b >|向量a|=√(x1^2+y1^2)
|向量b|=√(x2^2+y2^2)
《向量a,向量b >為二向量的夾角
2,座標形式:向量a•向量b= x1x2+y1y2
9樓:匿名使用者
向量a與向量b
設這兩個向量的夾角為
則這兩個向量的內積為
a*b=|a|*|b|*cos
當向量a=(x,y)
b=(j,k)
此時內積為
a*b=xj+yk
什麼叫矩陣的內積
10樓:秦桑
矩陣的內積參照向量的內積的定義是 兩個向量對應分量乘積之和.
比如: α=(1,2,3), β=(4,5,6)則 α, β的內積等於 1*4 +2*5 + 3*6 = 32α與α 的內積 = 1*1+2*2+3*3 = 14.
拓展資料:
內積(inner product),又稱數量積(scalar product)、點積(dot product)是一種向量運算,但其結果為某一數值,並非向量。其物理意義是質點在f的作用下產生位移s,力f所做的功,w=|f||s|cosθ。
在數學中,數量積(dot product; scalar product,也稱為點積)是接受在實數r上的兩個向量並返回一個實數值標量的二元運算。它是歐幾里得空間的標準內積。 兩個向量a = [a1, a2,…, an]和b = [b1, b2,…, bn]的點積定義為:
a·b=a1b1+a2b2+……+anbn。 使用矩陣乘法並把(縱列)向量當作n×1 矩陣,點積還可以寫為: a·b=a*b^t,這裡的b^t指示矩陣b的轉置。
11樓:珠海
答:設ann=[aij](其中1<=i,j<=n),bnn=[bij](其中1<=i,j<=n);
則矩陣a和b的內積為c1n=[∑(i=1到n求和)aij*bij](其中1<=i,j<=n)。
他別注意,此時內積c1n為1行,n列的矩陣。
舉例子矩陣a和b分別為:
[1 2 3]
[4 5 6]
[7 8 9]
和[9 8 7]
[6 5 4]
[3 2 1]
則內積為:
[1*9+4*6+7*3 2*8+5*5+8*2 3*7+6*4+1*9] = [54 57 54]
12樓:匿名使用者
參照向量內積。
比如n維方陣a,可看作n個向量組成的向量簇,a1·a1。
矩陣計算則為a'a。即為a的轉置乘a
13樓:長空一浪
我在matlab的quick start章節看到了這條:you can perform standard matrix multiplication, which computes the inner products between rows and columns, 這句的意思是做矩陣的標準乘法,也就是要計算行向量和列向量的內積。不是矩陣內積。
14樓:匿名使用者
廣義來講是相同大小的矩陣每個對應位置相乘後相加,得到一個實數
內積是什麼?
15樓:匿名使用者
如果有兩個向量:
a:(x1,x2,...,xn)
b:(y1,y2,...,yn)
那麼a和b的內積為:
x1y1+x2y2+...+xnyn
就是對應項相乘在求和,算出來是一個數
16樓:神遊飛天
內積在有限維實內積空間裡的度量矩陣個對稱正定
雙線性型
內積在有限維復內積空間裡的度量矩陣是hermite矩陣,是
一個半線性型:對於第一個向量線性,第二個向量共軛線性(或者對於第一個向量共軛線性,第二個向量線性)
說白了,設域f上的線性空間v,狹義內積其實就是從線性空間(v,v)->f的對映,滿足4條式子即可,且該線性空間具有長度,角度,距離等概念。
廣義內積:域f上線性空間v上的一個對稱/反對稱雙線性型函式f稱為v上的一個內積(無正定性,沒有長度,角度,距離等概念),指定了對稱雙線性型的內積的線性空間叫做正交空間;指定了反對稱雙線性型的線性空間叫做辛空間
17樓:縱橫豎屏
內積一般指點積。
在數學中,數量積(dot product; scalar product,也稱為點積)是接受在實數r上的兩個向量並返回一個實數值標量的二元運算。它是歐幾里得空間的標準內積。
兩個向量a = [a1, a2,…, an]和b = [b1, b2,…, bn]的點積定義為:
a·b=a1b1+a2b2+……+anbn。
使用矩陣乘法並把(縱列)向量當作n×1 矩陣,點積還可以寫為:
a·b=b*a^t,這裡的a^t指示矩陣a的轉置。
擴充套件資料:
運算律
應用:
在生產生活中,點積同樣應用廣泛。利用點積可判斷一個多邊形是否面向攝像機還是背向攝像機。
向量的點積與它們夾角的餘弦成正比,因此在聚光燈的效果計算中,可以根據點積來得到光照效果,如果點積越大,說明夾角越小,則物理離光照的軸線越近,光照越強。
物理中,點積可以用來計算合力和功。若b為單位向量,則點積即為a在方向b的投影,即給出了力在這個方向上的分解。功即是力和位移的點積。
計算機圖形學常用來進行方向性判斷,如兩向量點積大於0,則它們的方向朝向相近;如果小於0,則方向相反。
向量內積是人工智慧領域中的神經網路技術的數學基礎之一,此方法還被用於動畫渲染(animation-rendering)。
線代簡單問題求解,求解線代簡單題
求圓的方程時要根據條件靈活求解,與圓有關的最值問題也是常見兩種型別,用帶代數法和幾何法針對性的求解,注意平時多積累,多練習,多思考 線代簡單問題求解 交換律就是ab ba是吧,ab k,比如說k 2,那麼原式等於 a b a b 如果滿足交換律,中間ba交換位置,可以寫成a 2 b 2,不滿足交換律...
對於窮二代不願生子,使自己的孩子變成窮三代,你怎麼看
你要讓窮三代變成富二代嗎奮鬥吧朋友,窮二代最好不要小孩,何必害孩子 窮二代 不願生 窮三代 窮人孩子能改變命運嗎 窮二代 生出 窮三代 我不要孩子有錯麼 每個人都copy有自己的認知,和自己的選擇,你不生孩子,是你的選擇,應該被尊重,不過,在夫妻關係裡面,除了要對方尊重自己的選擇和意願,首先自己要尊...
對於60年代出生的父母怎麼與90年代孩子的相處
人,終究是社會動物,社會整體環境對你的影響,最終造就了你這個人。父母生長於物資匱乏的年代,家裡子女眾多,看著我們隨手就得到當年他們夢寐以求的東西,他們自然覺得我們是幸福的一代,而孩子也有孩子的煩惱,獲得了父母所有的溺愛,也獲得了所有父母的限制。父母覺得,我們為你付出那麼多,你那麼幸福,為啥不聽話,而...