1樓:
小學生問題
解法一:如圖(1),取三長邊的中點d、e、f,每兩個中點分別角線段連結起來,正好分成大小形狀完全相等的四份。
ad f
b e c解法二:如圖(2),把任意一條線,如bc邊平均分成四份,等分點記為d、e、f,並分別用線段把等分點和頂點a連結起來,則分成面積相等的四個三角形
ab d e f c解法三:如圖(3),把任意一條邊,如bc邊平均分成四份;d為一個等分點,連結ad,再將ad平均分成三份,等分點為e、f,連結ce,cf則分成面積相等的四個三角形。
還有其它解法,你能想到嗎?請自己試一試
最後一個圖點下面的參考資料
2樓:garfield_百
下面三種分法都可以
1.連線各邊中點
2.先把一邊四等分,再連線對角和這條邊上的四等分點3.取一邊中點,連線這點和對角以及另兩邊中點
3樓:牢業
把這個三角形任意一條邊四等分,把每個分點和相對應的頂點相接,就好了。
把一個三角形分成四個相等的三角形;有幾種分法?該怎樣分
4樓:匿名使用者
把一個三角形分成四個相等的三角形有一種分法:平衡分。
5樓:
1.作底邊的高,和其餘兩邊的中點,連線垂足與兩個中點 2.底邊平均分成4份,連線四專等份點和頂點 3.
作各邊的中點屬,連線成三角形 4.作底邊的高,作高的中點,與另外兩個頂點連線. 5.
底邊做1:3的分點,連線,兩個三角形面積為1:3.
將大三角形等份三份(將新畫...
6樓:面對現實創業
一共有三種吧,多了肯定是哦貳走了
7樓:匿名使用者
最簡單的就是三條中位線
8樓:匿名使用者
1錯了4錯了
下面回答
把任意一個三角形分成四等分,可以怎麼分
9樓:小學數學園地
小學奧數課堂 你有多少種方法把任意一個三角形平均分成面積相等的四份
10樓:雲影夢凡
找到中心點就可以過中心點做任意平分線
將一個三角形平均分成面積相等的四份有幾種方法??20分!
11樓:
無數種分法。以任意點為起點把三角形周長分為四等分,從三角形內心向各分點連線,就把三角形分成面積相等的四份了。分成的四份中,有的可能是四邊形,從內心向頂點連線,把這個四邊形分成兩個三角形。
根據等底等高的三角形面積相等可證明這四部分的面積相等。
12樓:
方法很多啊!說幾種。
一是把一邊四等分,三個分點連相對頂點即是
二是取一邊中線,再找此中線中點,分別連另兩個頂點。
三是中位線法,連各邊中點,得四個小三角形。
四是作一邊中線,由此中點向另兩邊中點連線。
把一個等邊三角形,分成相等的四份,該怎樣分【三種分法】
13樓:
是指面積相等嗎?第一種,把一條邊四等分,把等分點跟該邊相對的頂點連起來。第二種,連線三條邊的中點。第三種,作一條邊的中線(也就是高),連線這個中點和另兩條邊的中點。
14樓:匿名使用者
連線三角形三邊中點,就行了
證明 存在三角形可以分割成2019個全等三角形
注意到22 39 2005,於是,考查邊長分別為22,39,2005的直角三角形。設n 22,構造一個邊長分別為22 39 22,22 2005的三角形a,它由t的22 個複製品構成。設n 39,構造一個邊長分別為22 39,39 39 2005的三角形b,它由t的39 個複製品構成。因為三角形a,...
三角形四心都是哪四心,三角形的「四心」指哪四心?
是五心吧。三角形的五心 一 定理 重心定理 三角形的三條中線交於一點,這點到頂點的離是它到對邊中點距離的2倍。該點叫做三角形的重心。外心定理 三角形的三邊的垂直平分線交於一點。該點叫做三角形的外心。垂心定理 三角形的三條高交於一點。該點叫做三角形的垂心。內心定理 三角形的三內角平分線交於一點。該點叫...
三角形的斜邊是怎麼計算的,三角形的斜邊怎麼算?
三角形斜邊公式 勾股定理 一個直角三角形,兩直角邊平方之和 斜邊的平方在rt三角形abc中,角c 90 那麼a 2 b 2 c 2 所以a 根號c 2 b 2 b 根號c 2 a 2 c 根號a 2 b 2 勾股定理啊 斜邊c 3 2 2.65 2 2約等於4.01直接按照勾股定理就ok了。設直角三...