1樓:匿名使用者
分子為一個確定的數,分母為無窮大,那麼分子相對於分母太小,所以為無窮小量
極限為零的變數稱為無窮小量,但是無窮小不一定是零。請問為什麼啊?
2樓:匿名使用者
你也說無窮小的極來限源為0,這句話的意思bai是這個量和零的距du離要多近zhi有多近,但是沒有達到零dao
,你可以簡單的理解成無窮小是一條以零為漸近線的曲線,而零就是x軸(固定的直線),曲線可能慢慢的十分十分接近x軸,但是畢竟是漸近線,你不能說它和x軸重合了,你說它就是x軸(無窮小是零)那就更錯了
高等數學。極限,請問這個題用1^無窮的公式來做為什麼是錯的??
3樓:匿名使用者
正確的是應該du
cosx-1=1-2sin(x/2)*sin(x/2)-1=-2[sin(x/2)]^2,
但是通過zhi直接等價刻化是行的,你是不dao是因為跳了一步然專後老師認為屬錯了。
或者你可能是通過泰勒來刻化也是對的。你沒有表述清楚,最後你的答案肯定是對的。
高數中,到底什麼是極限?什麼是無窮小?通俗地說
1 通常做題中所說的極限,在存在情況下都是數。不存在一般就是無窮大。2 當然有極限值這個概念。極限和極限值的區別就在於,極限可以不存在,極限值一定是極限存在了的情況下的一個具體的數值!換句話說,提到極限值了,極限就一定存在。3 極限分為函式極限和數列極限2種。當然依靠變數來討論其他變數的極限,但是極...
請問極限的概念是什麼高等數學的極限定義是什麼意思?
極限的定義分為四個部分 1 對任意的 0 在定義中的作用就是刻畫出在x x0時,f x 可以無限接近於常數a,也就是 f x a 可以任意小。為了達到這一要求,所以 必須可以足夠小。考試中經常在 上做文章 2 存在 0 就是這個鄰域的半徑,x x0所能取到的所有點就是 x0 x0 x0,x0 這裡x...
高數無窮級數。為什麼收斂於,高數無窮級數。為什麼收斂於
我說一下它為什麼說顯然。思考過程是這樣的,上面是n次方,下面是n,當n趨近於 版無窮大的時候還 權要收斂,那麼多少的n次冪才能不是無窮?那麼只有小於1的數無窮次冪才能收斂。下面n,上面n次冪,想收斂,裡面就只有小於1,如果大於1,那麼上面再無窮的時候肯定是無窮大,這裡有計算經驗和級數算題的感覺在。將...