請問極限的概念是什麼高等數學的極限定義是什麼意思?

2021-03-05 09:21:29 字數 4731 閱讀 2574

1樓:匿名使用者

極限的定義分為四個部分:

1、對任意的ε>0:ε在定義中的作用就是刻畫出在x→x0時,f(x)可以無限接近於常數a,也就是∣f(x)-a∣可以任意小。為了達到這一要求,所以ε必須可以足夠小。

(考試中經常在ε上做文章)

2、存在δ>0:δ就是這個鄰域的半徑,x→x0所能取到的所有點就是(x0-δ,x0)∪(x0,x0+δ),這裡x取不到x0.但是這個鄰域δ到底有多大、距離x0有多遠,我們不知道,也沒有必要知道,只要知道δ是很小的一個數就可以啦。

3、0<∣x-x0∣<δ:自變數x→x0時,再次強調一下,x取不到x0這個點,但是可以取到x0附近和兩側的所有點。這就涉及到鄰域的概念,鄰域通俗講就是以點x0為中心的附近和兩側所有點,是一個區域性概念。

4、∣f(x)-a∣<ε:既然ε可以足夠小,則f(x)可以無限接近於常數a,也就是f(x)→a,這裡需要注意一點,雖然自變數x不能取到x0這個點,但是因變數f(x)是可以取到a的。

特別注意:函式在一點的極限存不存在和函式在這個點有沒有定義沒有關係。

擴充套件資料

極限的性質:

1、唯一性:存在即唯一

關於唯一性,需要明確x趨向於無窮,意味著x趨向於正無窮並且x趨向於負無窮;同理,x→xo,意味著x趨向於xo正且趨向於x0負。

比如:x趨向於無窮的時候,e^x的極限就不存在,因為x趨向於正無窮的時候e^x是無窮,x趨向於負無窮的時候e^x是0,根據極限存在的唯一性,所以這個極限不存在。

2、區域性有界性:存在必有界

極限存在只是函式有界的充分條件,而非必要條件,即函式有界但函式極限不一定存在。

判別有界性的方法

(1)理論法:函式在閉區間上連續,則函式必有界。

(2)計演算法:函式在開區間上連續且左右極限都存在,則函式有界。

(3)四則運演算法:有限個有界函式的和、差、積必有界。

3、區域性保號性:保持不等號的方向不變

極限大於零則在x→x0中函式大於零,把極限符號可以直接去掉,俗稱「脫帽法」。函式非負,則在極限存在的條件下,極限非負。這個結論成立的前提條件一定不能忘,一定要驗證一下函式極限是否存在。

2樓:閃亮登場

極限在高等數學中,極限是一個重要的概念。

極限可分為數列極限和函式極限,分別定義如下。

首先介紹劉徽的"割圓術",設有一半徑為1的圓,在只知道直邊形的面積計算方法的情況下,要計算其面積。為此,他先作圓的內接正六邊形,其面積記為a1,再作內接正十二邊形,其面積記為a2,內接二十四邊形的面積記為a3,如此將邊數加倍,當n無限增大時,an無限接近於圓面積,他計算到3072=6*2的9次方邊形,利用不等式an+1n時,不等式

|xn - a|<ε

都成立,那麼就成常數a是數列|xn|的極限,或稱數列|xn|收斂於a。記為lim xn = a 或xn→a(n→∞)

數列極限的性質:

1.唯一性:若數列的極限存在,則極限值是唯一的;

2.改變數列的有限項,不改變數列的極限。

幾個常用數列的極限:

an=c 常數列 極限為c

an=1/n 極限為0

an=x^n 絕對值x小於1 極限為0

函式極限的專業定義:

設函式f(x)在點x。的某一去心鄰域內有定義,如果存在常數a,對於任意給定的正數ε(無論它多麼小),總存在正數δ ,使得當x滿足不等式0<|x-x。|<δ 時,對應的函式值f(x)都滿足不等式:

|f(x)-a|<ε

那麼常數a就叫做函式f(x)當x→x。時的極限。

函式極限的通俗定義:

1、設函式y=f(x)在(a,+∞)內有定義,如果當x→+∽時,函式f(x)無限接近一個確定的常數a,則稱a為當x趨於+∞時函式f(x)的極限。記作lim f(x)=a ,x→+∞。

2、設函式y=f(x)在點a左右近旁都有定義,當x無限趨近a時(記作x→a),函式值無限接近一個確定的常數a,則稱a為當x無限趨近a時函式f(x)的極限。記作lim f(x)=a ,x→a。

函式的左右極限:

1:如果當x從點x=x0的左側(即x〈x0)無限趨近於x0時,函式f(x)無限趨近於常數a,就說a是函式f(x)在點x0處的左極限,記作x→x0-limf(x)=a.

2:如果當x從點x=x0右側(即x>x0)無限趨近於點x0時,函式f(x)無限趨近於常數a,就說a是函式f(x)在點x0處的右極限,記作x→x0+limf(x)=a.

注:若一個函式在x(0)上的左右極限不同則此函式在x(0)上不存在極限

函式極限的性質:

極限的運演算法則(或稱有關公式):

lim(f(x)+g(x))=limf(x)+limg(x)

lim(f(x)-g(x))=limf(x)-limg(x)

lim(f(x)*g(x))=limf(x)*limg(x)

lim(f(x)/g(x))=limf(x)/limg(x) ( limg(x)不等於0 )

lim(f(x))^n=(limf(x))^n

以上limf(x) limg(x)都存在時才成立

lim(1+1/x)^x =e

x→∞無窮大與無窮小:

一個數列(極限)無限趨近於0,它就是一個無窮小數列(極限)。

無窮大數列和無窮小數列成倒數。

兩個重要極限:

1、lim sin(x)/x =1 ,x→0

2、lim (1 + 1/x)^x =e ,x→∞ (e≈2.7182818...,無理數)

3樓:假裝隨便

數列型:對任意#,總存在一個%,當x大於%時,有f(x)到某個值的距離小於任意的#

點型:對任意#,總存在一個%,當x到某個點的距離小於%時,有f(x)到某個值的距離小於任意的#

無窮型:對任意#,總存在一個%,當x到小於%的絕對值時,有f(x)到某個值的距離小於任意的#

/ 其中#規定無限接近的概念

/ %規定了x的範圍:是無窮的大;還是某點領域;還是無窮

4樓:匿名使用者

極限基本解釋

1.是指無限趨近於一個固定的數值。

2.數學名詞。在高等數學中,極限是一個重要的概念。

極限可分為數列極限和函式極限.

學習微積分學,首要的一步就是要理解到,「極限」引入的必要性:因為,代數是人們已經熟悉的概念,但是,代數無法處理「無限」的概念。所以為了要利用代數處理代表無限的量,於是精心構造了「極限」的概念。

在「極限」的定義中,我們可以知道,這個概念繞過了用一個數除以0的麻煩,而引入了一個過程任意小量。就是說,除數不是零,所以有意義,同時,這個過程小量可以取任意小,只要滿足在δ的區間內,都小於該任意小量,我們就說他的極限為該數——你可以認為這是投機取巧,但是,他的實用性證明,這樣的定義還算比較完善,給出了正確推論的可能。這個概念是成功的。

數列極限標準定義:對數列,若存在常數a,對於任意ε>0,總存在正整數n,使得當n>n時,|xn-a|<ε成立,那麼稱a是數列的極限。

函式極限標準定義:設函式f(x),|x|大於某一正數時有定義,若存在常數a,對於任意ε>0,總存在正整數x,使得當x>x時,|f(x)-a|<ε成立,那麼稱a是函式f(x)在無窮大處的極限。

設函式f(x)在x0處的某一去心鄰域內有定義,若存在常數a,對於任意ε>0,總存在正數δ,使得當

|x-xo|<δ時,,|f(x)-a|<ε成立,那麼稱a是函式f(x)在x0處的極限。

極限的性質

性質1 唯一性   性質2 有界性   性質3 保號性   性質4 夾逼準則

擴充套件閱讀:

1 《高等數學(一)》全國高等教育自學考試指定教材[2023年版]。

2 武漢大學-章學誠-2023年2月

3 高等數學同濟五版

5樓:深海魚

在數學中,如果某個變化的量無限地逼近於一個確定的數值,那麼該定值就叫做變化的量的極限。

6樓:董青

說開始,時間(鍾)還沒動,繞宇宙的物體已經跑2圈了。

7樓:長芳蕙白長

函式極限的一般概念:在自變數的某個變化過程中,如果對應的函式值無限接近於某個確定的數,那麼這個確定的數就叫做在這個變化過程中的函式極限。

主要有兩種情形:

1.自變數x任意的接近於有限值x0

或者說趨於有限值x0

對應函式值的變化情形

2.x的絕對值趨於無窮,對應於函式值的變化。

可以把數列看成是自變數為n的函式,數列的極限就是n趨於正無窮時數列收斂的值。可以說是函式極限的一個特殊情況。

高等數學的極限定義是什麼意思?

8樓:drar_迪麗熱巴

定義:設為一無窮數列,如果存在常數a對於任意給定的正數ε(不論它多麼小),總存在正整數n,使得當n>n時的一切xn,均有不等式|xn - a|<ε成立,那麼就稱常數a是數列的極限,或稱數列收斂於a。記為lim xn = a 或xn→a(n→∞)。

』極限思想』方法,是數學分析乃至全部高等數學必不可少的一種重要方法,也是『數學分析』與在『初等數學』的基礎上有承前啟後連貫性的、進一步的思維的發展。

數學分析之所以能解決許多初等數學無法解決的問題(例如求瞬時速度、曲線弧長、曲邊形面積、曲面體的體積等問題),正是由於其採用了『極限』的『無限逼近』的思想方法,才能夠得到無比精確的計算答案。

人們通過考察某些函式的一連串數不清的越來越精密的近似值的趨向,趨勢,可以科學地把那個量的極準確值確定下來,這需要運用極限的概念和以上的極限思想方法。

9樓:匿名使用者

我想知道為什麼不能n

高等數學極限問題,高等數學的極限定義是什麼意思?

你每次把分子的sinx用x替換的時候都是錯的,都捨去會對結果產生影響的x 3的項,sinx x x 3 6 o x 3 請注意,所有的等量代換的原理都是極限的乘法法則,求a b的極限用c替換b就必須保證c b的極限是1。加法中的某一項不能隨便用等價無窮小去代換,因為換完並不能保證加法最終的結果是原來...

高等數學數列極限的問題,高等數學數列極限證明問題

用極限定義證明時就是 假設給定e 然後用不等式去找n的值 n與e有關 最後把邏輯過程你過來就是證明即先假設極限成立求n,若求的了n,然後反過來說以證明極限成立求不到n則極限不成立 高等數學數列極限證明問題 設 a b 2為 由 2 2 去絕對值符號得 號得b 回 將 a b 2分別帶入答12得 xn...

請問為什麼這個極限是無窮,高等數學。極限,請問這個題用1無窮的公式來做為什麼是錯的

分子為一個確定的數,分母為無窮大,那麼分子相對於分母太小,所以為無窮小量 極限為零的變數稱為無窮小量,但是無窮小不一定是零。請問為什麼啊?你也說無窮小的極來限源為0,這句話的意思bai是這個量和零的距du離要多近zhi有多近,但是沒有達到零dao 你可以簡單的理解成無窮小是一條以零為漸近線的曲線,而...