高等數學無窮級數為什麼這道題不能一開始就求R,有答案解釋

2021-04-26 20:24:27 字數 1481 閱讀 2631

1樓:努力的大好人

根式判別法與比式判別法,針對的都是正項級數的收斂問題,它們也可以用於解決冪專級數的收斂

半徑問題屬,可以直接取係數的比值或者根值的極限來求得收斂半徑的倒數,這是有阿貝爾定理決支撐的。但是此處的級數不是一般的冪級數,而是一個複合函式的冪級數。這時候阿貝爾定理可能不在成立,也就是收斂區域不一定是對稱的,所以就需要具體的分析複合函式本身。

望採納!

高數裡無窮級數中什麼時候用比較審斂法什麼時候用比值審斂法

2樓:明天你好

首先必須是正項級數,然後根據通項優先考慮比值審斂法或根值審斂法,版如果用這兩種方法得出權極限值為1,無法判定斂散性,這兩種方法失效,這時候一般用比較審斂法是有效的。

比值審斂法較為簡單,但是使用範圍窄,比較審斂法使用範圍廣,但是找一個已知的級數用來有效地判定所求級數的斂散性比較麻煩。

擴充套件資料

比值審斂法是判別級數斂散性的一種方法,又稱為達朗貝爾判別法(d'alembert's test)。定理設

為正項級數,其中每一項皆為非 0 的實數或複數,如果

當ρ<1時級數收斂。

當ρ>1時級數發散。

當ρ=1時級數可能收斂也可能發散。

典型題,而一般項為1/n的級數發散(調和級數發散),由比較審斂法知此級數發散。

3樓:龍之穗

通項u有階乘或者指數用比值,通常失效用比較法

4樓:匿名使用者

首先必抄須是正項級數襲,然後根據通項bai優先考慮比值審斂法或根

du值審斂法,如果你用zhi這兩種方dao

法得出極限值為1,無法判定斂散性,這兩種方法失效,這時候一般用比較審斂法是有效的。前兩種審斂法簡單粗暴,但是適用範圍有效,一旦極限值為1,就沒有用了,比較審斂法適用範圍更廣,但是蛋疼的在於怎麼找一個已知的級數用來有效地判定所求級數的斂散性,感覺還是多做題就好了

關於高等數學中求無窮級數的和函式的小問題

5樓:

不管先後,都要求收斂域,因為冪級數的定義域一般是(-∞,+∞),比和函式存在的範圍要大很多。一般應在求和函式之前求收斂域。42題實際上欠缺這一步,有了收斂域,後面才好逐項求導。

6樓:匿名使用者

可能是兩個研究生做的答案,按理42也應該求收斂域,嚴謹。

42的收斂域同43,也是r.

為啥這題高數不能用第一個重要極限,反而直接把0代入了,搞不清楚什麼時候可以代入,什麼時候不可以代入?

7樓:愛玩爐石

很容易,第二個用重要極限,重要極限sinx/x應用條件是x趨近於0,這樣它整體極限趨近於1,但是第一個你看是sin1/x,x趨近於0,所以1/x趨近於無窮,並不趨近於0,而是用無窮小乘一個有界函式的極限還是無窮小來做,所以第一個極限是0。希望採納,謝謝。

高等數學中無窮級數收斂的題目,高等數學中幾道無窮級數的題目

根據這個極限,很自然聯想到比值法,但是這裡的級數沒有點明是正項級數。根據極限的保號性,當n充分大時,u n 1 un 0,所以un 0或un 0。所以,去掉前有限項後un恆大於零或小於零。如果un 0,由比值法直接得到級數發散。如果un 0,考慮通項是 un的正項級數,其發散,所以原級數也發散。寫了...

高等數學,無窮級數,收斂發散是否等於發散

微積分 無窮級數 兩個級數一個收斂一個發散,相加一定發散 希望能幫到你,望採納,謝謝 利用均值不等式bai 2ab a2 b2 du an n 1 2 an2 1 n2 zhian2與 1 n dao2都收斂,所以 an2 1 n2 收斂。由比較審斂回法,答an n 收斂,所以 an n絕對收斂。高...

高等數學中無窮級數的和函式收斂域問題

很明顯,印錯了。不能等於1,但等於 1是對的。關於高等數學中求無窮級數的和函式的小問題 不管先後,都要求收斂域,因為冪級數的定義域一般是 比和函式存在的範圍要大很多。一般應在求和函式之前求收斂域。42題實際上欠缺這一步,有了收斂域,後面才好逐項求導。可能是兩個研究生做的答案,按理42也應該求收斂域,...