1樓:以何憶
我覺得把這個定積分看成標準正態分佈的概率密度就好了。對於概率密度fx有性質:積分正∞到負∞的值為1。所以結果就是u了。
2樓:罪龍
我的理解是:第二行到第三行是這樣的
3樓:什麼都不主動
樓上把他看做正態分佈挺好的,不過正態分佈的密度函式證明也要證明你這個問題,所以嚴格來說沒有解決這個問題。另一個回答是計算var的過程,並不是e。下面貼上我在《概率論基礎教程》一書中找到的證明過程:
4樓:匿名使用者
^f(z) =σz.e^(-z^2/2)
f(-z)= -f(z)
=> ∫(-∞->+∞) σz.e^(-z^2/2) dz =0
[1/√(2π) ]∫(-∞->+∞) e^(-z^2/2) dz =1
=>∫(-∞->+∞) e^(-z^2/2) dz = √(2π)
[1/√(2π) ]∫(-∞->+∞) (σz+μ) e^(-z^2/2) dz
=[1/√(2π) ]∫(-∞->+∞) σz.e^(-z^2/2) dz +[1/√(2π) ]∫(-∞->+∞) μ.e^(-z^2/2) dz
=[1/√(2π) ]∫(-∞->+∞) μ.e^(-z^2/2) dz=μ
正態分佈的數學期望
5樓:匿名使用者
^^e(x^來4)
=∫x^4*1/√(2π)e^(
自-x^2/2)dx 積分割槽間bai(-∞,du+∞)zhi
=2∫x^4*1/√(2π)e^(-x^2/2)dx 積分割槽間(0,+∞)
分步積分。dao
=-2x^3*1/√(2π)e^(-x^2/2)+2/√(2π)∫3x^2*e^(-x^2/2)dx
=-2x^3*1/√(2π)e^(-x^2/2)-2/√(2π)3x*e^(-x^2/2)
+2/√(2π)∫3*e^(-x^2/2)dx
積分割槽間(0,+∞)
1/√(2π)∫e^(-x^2/2)dx=1/2
2/√(2π)∫3*e^(-x^2/2)dx=3*2*1/2=3
而2x^3*1/√(2π)e^(-x^2/2)-2/√(2π)3x*e^(-x^2/2)
=2x^3/√(2π)e^(x^2/2)-6x/√(2π)*e^(x^2/2)
利用羅必塔法則,
lim2x^3/√(2π)e^(x^2/2)-6x/√(2π)*e^(x^2/2)=0
所以e(x^4)=3
6樓:蛋庚飯飯
不知道哇!不蠻足線性!
直覺告訴我是0
7樓:匿名使用者
當n是奇數時,ex^n=0;
當n是偶數時,ex^n=&^n(n-1)!!
[&是標準差,(n-1)!!=(n-1)*(n-3)*(n-5)*……*3*1]
推導對數正態分佈數學期望的積分過程
8樓:加百列
設正態分佈概率密度函式是f(x)=[1/(√2π)t]*e^[-(x-u)^2/2(t^2)],就是均值是u,方差是t^2。
於是:∫e^[-(x-u)^2/2(t^2)]dx=(√2π)t.(*)62616964757a686964616fe4b893e5b19e31333431353964
積分割槽域是從負無窮到正無窮,下面出現的積分也都是這個區域。
(1)求均值
對(*)式兩邊對u求導:
∫{e^[-(x-u)^2/2(t^2)]*[2(u-x)/2(t^2)]dx=0
約去常數,再兩邊同乘以1/(√2π)t得:
∫[1/(√2π)t]*e^[-(x-u)^2/2(t^2)]*(u-x)dx=0
把(u-x)拆開,再移項:
∫x*[1/(√2π)t]*e^[-(x-u)^2/2(t^2)]dx=u*∫[1/(√2π)t]*e^[-(x-u)^2/2(t^2)]dx
也就是∫x*f(x)dx=u*1=u
這樣就正好湊出了均值的定義式,證明了均值就是u.
(2)方差
對(*)式兩邊對t求導:
∫[(x-u)^2/t^3]*e^[-(x-u)^2/2(t^2)]dx=√2π
移項:∫[(x-u)^2]*[1/(√2π)t]*e^[-(x-u)^2/2(t^2)]dx=t^2
也就是∫(x-u)^2*f(x)dx=t^2
正好湊出了方差的定義式,從而結論得證。
擴充套件資料:
二重積分的現實(物理)含義:面積 × 物理量 = 二重積分值。
舉例說明:二重積分的現實(物理)含義:
1、二重積分計算平面面積,即:面積 × 1 = 平面面積。
2、二重積分計算立體體積,即:底面積 × 高 = 立體體積。
3、二重積分計算平面薄皮質量,即:面積 × 面密度 = 平面薄皮質量。
二重積分的定義式:
其中***與yyy叫做積分變數,f(x,y)f(x,y)f(x,y)叫做被積函式,dσd\sigmadσ叫做面積元素,ddd叫做積分割槽域。
9樓:匿名使用者
沒有太簡單的方法了
兩次換元法,可以化成概率積分的形式
這個積分的結果可以直接用
所以,也不算太麻煩
過程如下:
10樓:量綱學
利用矩母函式避免複雜積分
求兩個數學公式的推導過程
1 一個數的n分之m次方等於這個數的m次方再開n次方根設這個數為a a n m a n a n a n m次 a a a n次 a a a n次 a a a n次 m次 即m n個相乘a 每個 a a a n次 取一個a相乘,可以取n次,即 a a a m次 a a a m次 a a a m次 n次...
如何用一組資料估計出其最符合的正態分佈的引數
excel只能做粗略bai的正態分du布圖 將數量從zhi200到600,按每間隔dao50 也可以按30 60 統專計出現次數,如200 屬250,250 300,300 350,將各區間段的出現次數做直方圖,如果資料滿足正態分佈,出來的結果就是正態分佈圖。如何用一組資料估計出其最符合的正態分佈的...
求擲n顆骰子出現的點數之和的數學期望與方差
每一復個骰子點數制x的期 望是bai 1 2 3 4 5 6 6 3.5 e x方du 1 4 9 16 25 36 6 15.167 dx 15.167 3.5方 2.916666667 點數之和zhiy的期望ey n 3.5 方差daody n dx 2.9166666667n 求擲8只骰子出現...