已知三角形的高n和底邊m,程式設計求三角形的面積。(三角形面積s

2021-03-23 15:24:57 字數 6408 閱讀 4407

1樓:匿名使用者

m×n=1,則-cosa+√3sina=1,兩邊同除以2可得變形-1/2cosa+√3sina=1/2即sin(a-30)=1/2,則a等於60°。根據第二題bc=√3,且a點距離b點也是√3。這是一個等腰三角形。

多年不上學了,我也忘了如何用三角函式和邊長求面積,大概是1/2*√3*√3*sin(180-∠abc)求最大值。可知當∠abc=90°的時候得到最大值,即最大面積為3/2。你看是不是

2樓:育知同創教育

#include

void main()

c語言程式設計,已知三角形的三邊長a,b,c,計算求三角形面積的公式為:

3樓:丿

程式**如下:

#include

#include

int main()

擴充套件資料

三角形具有以下性質:

1、三角形任意兩邊之和大於第三邊,任意兩邊之差小於第三邊。

2、在平面上三角形的內角和等於180°(內角和定理)。

3、在平面上三角形的外角和等於360° (外角和定理)。

4、三角形的三條角平分線交於一點,三條高線的所在直線交於一點,三條中線交於一點。

5、三角形的任意一條中線將這個三角形分為兩個面積相等的三角形。

4樓:匿名使用者

1、公式:area = sqrt(s*(s-a)*(s-b)*(s-c))

2、**:

printf("依次輸入a,b,c(空格識別一個數):");

scanf("%f%f%f,",&a,&b,&c);

s=(float)0.5*(a+b+c);

area = (float)sqrt(s*(s-a)*(s-b)*(s-c));

printf("面積為:%f",area);

}擴充套件資料舉例:  a=3.67;b=5.43; c=6.21;

1、int main()

參考資料

5樓:匿名使用者

#include

int main()

else

}else

printf("\n");

return 0;}

6樓:bboy鶴

#include

#include

void main()

**如上 很簡單的 自己多動手

7樓:匿名使用者

#include

#include

int main ()

8樓:匿名使用者

這個問題不難的,還是自己思考下吧

c語言作業:1.已知三角形的三邊長a,b,c,計算三角形面積的公式為 s=1/2(a+b+c),area=根號s(s-a)(s-b)(s-c)

9樓:匿名使用者

前提是a,

b,c能構成3角形

#include "stdio.h"

#include "conio.h"

#include "math.h"

main()

這是在win tc下編譯的,經本人運算,ok

10樓:匿名使用者

前提條件是三邊可以構成三角形

#include

#include

void main()

前提條件是三邊可以構成三角形

11樓:匿名使用者

include

int a,b,c;

real s,area;

void main()

已知一個三角形中三條邊的長度分別為a,b和c,編寫程式利用公式求出三角形的面積,其中s=(a+b+c)/2。要求

12樓:匿名使用者

using system;

using system.collections.generic;

using system.linq;

using system.text;

namespace _1

else

console.readline();}}}這是在c#中寫的,如果你要c的話,請留言

13樓:匿名使用者

#include

#include

int is_********(int,int,int);

int main()

s=(a+b+c)/2;

area=sqrt(s*(s-a)*(s-b)*(s-c));

printf("三角形的面積是:\n%f\n",area);

return 0;

} int is_********(int a,int b,int c)

else

return 0;

}注意輸入三條邊長之間加半形逗號,如:3,4,5

14樓:匿名使用者

開始——>輸入a,b,c ----->判斷a+b>c嗎?------> 否 就輸出 三角形不

存在 ;是就再判斷|a-b|皆結束

已知三角形的三邊長如何求面積?

15樓:老衲吃橘子

各類三角形求面積方式如下所示:

1.已知三角形底a,高h,則 s=ah/2

2.已知三角形三邊a,b,c,則

(海**式)(p=(a+b+c)/2)

s=sqrt[p(p-a)(p-b)(p-c)]

=sqrt[(1/16)(a+b+c)(a+b-c)(a+c-b)(b+c-a)]

=1/4sqrt[(a+b+c)(a+b-c)(a+c-b)(b+c-a)]

3.已知三角形兩邊a,b,這兩邊夾角c,則s=1/2

absinc,即兩夾邊之積乘夾角的正弦值。

4.設三角形三邊分別為a、b、c,內切圓半徑為r

則三角形面積=(a+b+c)r/2

5.設三角形三邊分別為a、b、c,外接圓半徑為r

則三角形面積=abc/4r

6.行列式形式

為三階行列式,此三角形

在平面直角座標系內

選取最好按逆時針順序從右上角開始取,因為這樣取得出的結果一般都為正值,如果不按這個規則取,可能會得到負值,但不要緊,只要取絕對值就可以了,不會影響三角形面積的大小。

該公式的證明可以藉助「兩夾邊之積乘夾角的正弦值」的面積公式 。

7.海倫——秦九韶三角形中線面積公式:

s=√[(ma+mb+mc)*(mb+mc-ma)*(mc+ma-mb)*(ma+mb-mc)]/3

其中ma,mb,mc為三角形的中線長.

8.根據三角函式求面積:

s= ½ab sinc=2r² sinasinbsinc= a²sinbsinc/2sina

注:其中r為外切圓半徑。

9.根據向量求面積:

其中,(x1,y1,z1)與(x2,y2,z2)分別為向量ab與ac在空間直角座標系下的座標表達,即:

向量臨邊構成三角形面積等於向量臨邊構成平行四邊形面積的一半。

三角形面積公式是指使用算式計算出三角形的面積,同一平面內,且不在同一直線的三條線段首尾順次相接所組成的封閉圖形叫做三角形,符號為△。

常見的三角形按邊分有等腰三角形(腰與底不等的等腰三角形、腰與底相等的等腰三角形即等邊三角形)、不等腰三角形;按角分有直角三角形、銳角三角形、鈍角三角形等,其中銳角三角形和鈍角三角形統稱斜三角形。

16樓:千山鳥飛絕

已知三角形的三邊長分別為a、b、c,根據海**式則三角形的面積公式如下圖所示,其中公式裡的p為半周長:

1、解析過程如下圖所示:

2、舉例計算過程如下:

17樓:叫那個知道

海倫-秦九韶公式

已知三邊是a,b,c

令p=(a+b+c)/2

則s=√[p(p-a)(p-b)(p-c)]

18樓:匿名使用者

利用海**式。

三邊是a,b,c;令p=(a+b+c)/2;則s=√[p(p-a)(p-b)(p-c)]

海**式:

假設在平面內,有一個三角形,邊長分別為a、b、c,三角形的面積s可由以下公式求得:

而公式裡的p為半周長(周長的一半):

注:"metrica"《度量論》手抄本中用s作為半周長,所以兩種寫法都是可以的,但多用p作為半周長。

它的特點是形式漂亮,便於記憶。

擴充套件資料公式意義

海**式的提出為三角形和多邊形的面積計算提供了新的方法和思路,在知道三角形三邊的長而不知道高的情況下使用海**式可以更快更簡便的求出面積,比如說在測量土地的面積的時候,不用測三角形的高,只需測兩點間的距離,就可以方便地匯出答案。

19樓:真心話啊

(面積=底×高÷2。其中,a是三角形的底,h是底所對應的高)註釋:三邊均可為底,應理解為:三邊與之對應的高的積的一半是三角形的面積。這是面積法求線段長度的基礎。

所有求三角形面積公式:

8、在平面直角座標系內,a(a,b),b(c,d),c(e,f)構成之三角形面積為

(正三角形面積公式,a是三角形的邊長)

(其中,r是外接圓半徑;r是內切圓半徑)

13、設三角形三邊為ac,bc,ab,點d垂直於ab,為三角形abc的高由於db=bc*cosb, cosb可用餘弦定理式表示。

利用餘弦定理求得:再利用勾股定理求得cd再用面積=底×高÷2,最終得出面積公式。

20樓:柿子的丫頭

海倫-秦九韶公式

三邊是a,b,c

令p=(a+b+c)/2

則s=√[p(p-a)(p-b)(p-c)]

已知三角形的三邊長,求三角形面積,有公式:

擴充套件資料

摺疊直角三角形

解直角三角形需要用到勾股定理(弦)定理,又稱畢達哥拉斯定理或畢氏定理(pythagoras theorem)。數學公          式中常寫作a^2+b^2=c^2,其中a和b分別為直角三角形兩直角邊,c為斜邊。

勾股弦數是指一組能使勾股定理關係成立的三個正整數。比如:3,4,5。

常見的勾股弦數有:3,4,5;6,8,10;5,12,13;10,24,26;等等。

其中,互素的勾股陣列成為基本勾股陣列,例如:3,4,5;5,12,13;8,15,17等等

摺疊斜三角形

在三角形abc中,角a,b,c的對邊分別為a,b,c. 則有

(1)正弦定理

a/sina=b/sinb= c/sinc=2r (r為三角形外接圓半徑)。

(2)餘弦定理

a^2=b^2+c^2-2bc*cosa;

^2=a^2+c^2-2ac*cosb;

c^2=a^2+b^2-2ab*cosc。

備註:勾股定理其實是餘弦定理的一種特殊情況。

(3)餘弦定理變形公式

cosa=(b^2+c^2-a^2)/2bc;

cosb=(a^2+c^2-b^2)/2ac;

cosc=(a^2+b^2-c^2)/2ab。

21樓:匿名使用者

已知三角形的三邊分別是a、b、c,

先算出周長的一半s=1/2(a+b+c)

則該三角形面積s=根號[s(s-a)(s-b)(s-c)]

這個公式叫海倫——秦九昭公式

證明:設三角形的三邊a、b、c的對角分別為a、b、c,

則根據餘弦定理c²=a²+b²-2ab·cosc,得

cosc = (a²+b²-c²)/2ab

s=1/2*ab*sinc

=1/2*ab*√(1-cos²c)

=1/2*ab*√[1-(a²+b²-c²)²/4a²b²]

=1/4*√[4a²b²-(a²+b²-c²)²]

=1/4*√[(2ab+a²+b²-c²)(2ab-a²-b²+c²)]

=1/4*√

=1/4*√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)]

設s=(a+b+c)/2

則s=(a+b+c), s-a=(-a+b+c)/2, s-b=(a-b+c)/2, s-c=(a+b-c)/2,

上式=√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)/16]

=√[s(s-a)(s-b)(s-c)]

所以,三角形abc面積s=√[s(s-a)(s-b)(s-c)]

證明完畢

已知三角形3條邊長求面積的公式,已知三角形的三條邊的邊長,求面積的公式

答案 三斜求積術 我國著名的數學家九韶在 數書九章 提出了 三斜求積術 秦九韶他把三角形的三條邊分別稱為小斜 中斜和大斜。術 即方法。三斜求積術就是用小斜平方加上大斜平方,送到斜平方,取相減後餘數的一半,自乘而得一個數小斜平方乘以大斜平方,送到上面得到的那個。相減後餘數被4除馮所得的數作為 實 作1...

三角形求角度數,已知三角形三邊求角度。

祝你學習進步,更上一層樓!不明白請及時追問,滿意敬請採納,o o謝謝 記得及 價啊,答題不易,希望我們的勞動能被認可,這也是我們繼續前進的動力!afd 158,則 cfd 22,c 22,b c 22,最後得 efd 68 已知三角形三邊求角度。用餘弦定理,假設角是x。則cosx 600 511 7...

已知三角形的邊為30159,求三角形的面積

不能構成三角形,無法求面積。分析過程如下 三角形的三個邊為30,15,9,三角形的兩條邊的和9 15 24,而另一條邊是30,兩條邊的和小於第三條邊,與三角形的兩邊之和大於第三條邊相違背,所以不能構成三角形。擴充套件資料 三角形的性質 1 在平面上三角形的內角和等於180 內角和定理 2 在平面上三...