設集合A 0,2,4 1,3,5 分別從A B中

2021-06-08 12:43:59 字數 687 閱讀 1269

1樓:

首先考慮一共可以組成多少組4位數,因為是從3個元素a,b,c中取兩個元素且元素及集合順序都可顛倒,所以組成方法有6種:ab ac ba bc ca cb同理b集合一樣有6種情況,所以一共可組6*6*2=72種不同的數字,其中只有0或5結尾的才能夠被5整除,以集合a在前,集合b在後舉例,能使5結尾的元素組有15 35,所以這種情況下可以被5整除的數有6*2=12個,同理集合b在前,集合a在後的一樣有12個可被5整除的4位數,所以不能被整除的數就有72-12-12=48個數字

2樓:初傑仲華美

分析:根據0的特殊性質,本題包括三種情況第一隻含0不含5的數字,第二隻含5不含0的數字,第三含有0和5的又包含兩種①0在個位和5在個位時,寫出各種情況對應的結果數,利用加法原理得到結果.

解答:解:∵由題意知本題包括三種情況(1)只含0不含5的數字共有c21c22a33=12種結果

(2)只含5不含0的共有c21c22a33=12種結果,

(3)含有0和5的又包含兩種①0在個位時有c21c21a33=24種結果

②5在個位時有c21c21a22=16種結果

∴根據分類計數原理知共有12+12+24+16=64.

故選c點評:數字問題是排列中的一大類問題,條件變換多樣,把排列問題包含在數字問題中,解題的關鍵是看清題目的實質,很多題目要分類討論,要做到不重不漏.

設全集U 1 2 3 4 5 6 7 8,集合A 2 4 6,集合B 3 4 5求A交

設全集u 集合a 集合b 求 a交b 就是a和b中都有的數字 4 設全集u 1,2,3,4,5,6,7,8 集合a 1,2,3,5 b 2,4,6 則圖中的陰影部分表示的集合為 全集u 集合a b 由韋恩圖可知陰影部分表示的集合為 cu a b,cu a cu a b 故選b 設全集u 0,1,2,...

設集合I 1,2,3,4,5。選擇I的兩個非空集合A和B

c5,2 c1,1 c5,3 c2,1 c5,4 c3,1 c5,5 c4,1 10 20 15 4 49.其中cn,m是組合數。解釋如下 因為a b都是非空集合,所以至少要從5個數中選2個 分別給a和b 又因為要使b中最小的數大於a中最大的數,所以兩個集合中的元素沒有重複 所以可以採取先從1,2,...

設A,B是有限集合,且AB,又fAB是映

設 a b n,a b 若f是單射,則f a 1 f a 2 f a n 這n個元素互不相等,且都屬於b,所以b中每個元素都有內原像,即 容f是滿射。若f是滿射,則 f a b n。假設f不是單射,則f a 1 f a 2 f a n 至少有兩個相同元素,即 f a 所以f是單射。設a,b是兩個集合...