為什麼角的正弦的正負與其半形的正切值的正負一樣

2022-12-04 15:56:11 字數 5110 閱讀 7185

1樓:f4u4u4r的老巢

當2kπ<α<2kπ+π,k∈z時,sinα>0故其半形kπ<1/2α0

所以此時tan1/2α>0,與sinα同正同理,也同負望採納

2樓:匿名使用者

1.已知2-√3是方程x2-(tanα+cotα)x+1=0的一個根,求sin2α和cos4α。

另一根為x1 (2-√3)*x1=1 x1=2+√3

tanα+cotα=(2-√3)+(2+√3)=4

tanα+cotα=sina/cosa+cosa/sina=1/(sinacossa)=2/sin2a=4 sin2a=1/2

cos4α=1-2(sin2a)^2==1/2

2.化簡:√(1+sina)+√(1-sina) a∈(0,π) a/2∈(0,π/2)

=√(sina/2+cosa/2)^2+√(sina/2-cosa/2)^2

=sina/2+cosa/2+|sina/2-cosa/2|

a∈(0,π/2)a/2∈(0,π/4)cosa/2>sina/2

=sina/2+cosa/2+cosa/2-sina/2=2cosa/2

a∈(π/2,π)a/2∈(π/4,π/2)cosa/2

==sina/2+cosa/2+sina/2-cosa/2=2sina/2

為什麼一個角的正弦的正負與其半形的正切值的正負一樣?

3樓:匿名使用者

因為y=tan(x/2)與y=sinx的週期區間及增減區間均相同。

怎麼判斷sin cos tan在四象限中的正負值 ?為什麼??

4樓:南瓜蘋果

sin:一二正,

三四負。

cos:一四正,二三負。

tan:一三正,二四負。

這是由三角函式的定義確定符號。

口訣:一正,二正弦,三切,四餘弦。

意思如下:在第一象限全為正。

在第二象限sin為正(其他的為負);

在第三象限tan為正(其他的為負);

在第四象限cos為正(其他的為負);

擴充套件資料三角函式,是以角度為自變數,以直接三角形的三個邊的比值為因變數的函式,它讓角度和邊進行了聯絡,同時由於角度是可以任意大或者小的(負無窮到正無窮),但是比值往往具有臨界值(當然是大部分),所以三角函式天然具有周期的潛在性質。

例如:正餘弦函式,同時三角函式的有規律可尋(一般是臨界值,週期等),為複雜的關係研究和推導、全面描述提供可能。

三角函式的週期性的潛在特性,提供了三角函式在複雜運算中的簡化分析特性,特別是振動類的物理量中(比如:振動方程、電磁波等),三角函式是描述角度變化的關係式,也為具有角度變化的複雜關係提供了一種研究方向,一旦能確定週期性,更就簡化了運算,降低複雜度。

5樓:樟樹五六

由三角函式的定義確定符號。

設a是一個任意大小的角,a的終邊上任意一點p的座標(x,y),它與原點的距離是r(r=根號x的平方+y的平方>0)。則有:

正弦:sina=y除以r

所以sina的符號與y的符號相同。一二象限為正。三四象限為負。

餘弦:cosa=x除以r

所以cosa的符號與x的符號相同。一四象限為正。二三象限為負。

正切:tana=y除以x

所以x和y同號時為正,一三象限正。x和y異號時為負,二四象限負

6樓:匿名使用者

畫一各單位園,定一個xoy座標系,在第一象限做一個角:a1;在第二象限作a2角;依次在第三、第四象限作a3、a4角;a1,2,3,4點都在單位圓上,oa1,2,3,4長度=1(單位圓半徑);作a1,a2,a3,a4到x軸的垂足:b1,b2,b3,b4;

根據sina、cosa、tana 的定義,就可以判斷:

sina1=a1b1/oa1=+/+1 > 0  第一象限正弦值為「正」;

cosa2=ob2/oa2=-/+1 < 0   第二象限餘弦值為「負」;

tana4=a4b4/ob4=-/+  < 0   第四象限正切值為「負」;

其它三角函式值的正負依此法都可以判斷出來。看圖:

7樓:隨緣

關於三角函式在各個象限的正負

8樓:河傳楊穎

三角函式有:正

弦函式、餘弦函式、正切函式、餘切函式、正割函式、餘割函式,在各個象限的正負情況如下:(表示格式為「象限」/「+或-」)

正弦函式:y=sinx,一/+、二/+、三/-、四/-;

餘弦函式:y=cosx,一/+、二/-、三/-、四/+;

正切函式:y=tanx,一/+、二/-、三/+、四/-;

餘切函式:y=cotx,一/+、二/-、三/+、四/-;

正割函式:y=secx,一/+、二/-、三/-、四/+;

餘割函式:y=cscx,一/+、二/+、三/-、四/-。

奇偶性的判定:

(1)定義法

用定義來判斷函式奇偶性,是主要方法 . 首先求出函式的定義域,觀察驗證是否關於原點對稱. 其次化簡函式式,然後計算f(-x),最後根據f(-x)與f(x)之間的關係,確定f(x)的奇偶性。

f(-x)=-f(x)奇函式,如:sin(-x)=-sinx。

f(-x)=f(x)偶函式,如:cos(-x)=cosx。

(2)用必要條件

具有奇偶性函式的定義域必關於原點對稱,這是函式具有奇偶性的必要條件。

9樓:是你找到了我

1、sinx:依次為一正、二正、三負、四負2、cosx:依次為一正、二負、三負、四正3、tanx:

依次為一正、二負、三正、四負4、cotx:依次為一正、二負、三正、四負5、secx:依次為一正、二負、三負、四正6、cscx:

依次為一正、二正、三負、四負

10樓:啊天文

一全二正三切四餘

一,二,三,四指所在的象限角。

第一象限內,正弦,餘弦,正切,餘切函式都為正,簡化,就是銳角的三角函式都為正。

第二象限內,只有正弦函式為正,記一個特殊角即可,如135°,sin135°=根號2>0,cos135°=-根號2<0,tan135°=cot135°=-1<0.

第三象限內,正切,餘切函式為正。

第四象限內,餘弦函式為證。

角度轉化為 【0°,360°)

不好記憶,就採用特殊角記住就行。

11樓:千重沙漏

一全正、二正弦、三兩切、四餘弦

12樓:匿名使用者

正一二,餘14,切13

13樓:說好不分手**

-26℃三角函式值的正負號?

各象限的三角函式正負值

14樓:綠鬱留場暑

sinx:1,2象限正;3,4象限負;

cosx:2,3象限負;1,4象限正;

tanx:1,3象限正;2,4象限負;

cotx:1,3象限正;2,4象限負。

簡記口訣:一全,二正弦,三正切,四餘弦。

擴充套件資料:常用公式

公式一設α為任意角,終邊相同的角的同一三角函式的值相等:

sin(2kπ+α)=sinα (k∈z)cos(2kπ+α)=cosα (k∈z)tan(2kπ+α)=tanα (k∈z)cot(2kπ+α)=cotα(k∈z)

公式二設α為任意角,π+α的三角函式值與α的三角函式值之間的關係:

sin(π+α)= -sinα

cos(π+α)=-cosα

tan(π+α)= tanα

cot(π+α)=cotα

公式三任意角α與-α的三角函式值之間的關係(利用 原函式 奇偶性):

sin(-α)=-sinα

cos(-α)= cosα

tan(-α)=-tanα

cot (—α) =—cotα

公式四利用公式二和公式三可以得到π-α與α的三角函式值之間的關係:

sin(π-α)= sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotα

公式五利用公式一和公式三可以得到2π-α與α的三角函式值之間的關係:

sin(2π-α)= -sinα

cos(2π-α)= cosα

tan(2π-α)=-tanα

cot(2π-α)=-cotα

公式六π/2±α與α的三角函式值之間的關係:

sin(π/2+α)=cosα

sin(π/2-α)=cosα

cos(π/2+α)=-sinα

cos(π/2-α)=sinα

tan(π/2+α)=-cotα

tan(π/2-α)=cotα

cot(π/2+α)=-tanα

cot(π/2-α)=tanα

15樓:假面

sinx:上半邊正,下半邊負;

cosx:左半邊負,右半邊正;

tanx:1,3象限正,2,4象限負;

cotx:1,3象限正,2,4象限負。

16樓:提分一百

三角函式在各象限的符號例題分析一

17樓:齊軒

sinx,一二正,三四負;cosx,一四正,二三負。

18樓:小俠風清揚

正弦 一二象限正,三四象限負

餘弦 一四象限正 ,二三象限負

正切 一三象限正,二四象限負

餘切 和正切一樣

sin和cos的半形公式為什麼結果是正負號?

19樓:叫水瓶的魚

因為這個公式是推匯出來的。cosx=1-2sin²(x/2)

∴sin(x/2)=±√((1-cosx)/2)

作出各角的正弦線和餘弦線 正切線(畫圖)

正弦線 就是角 a 終邊與圓周交點p 向 x 軸所作的垂線 p 點的 y 座標 它是有向線段 y 為正就向上,y 為負就向下 餘弦線 就是角 a 終邊與圓周交點p 向 y 軸所作的垂線 p 點的 x 座標 它是有向線段 x 為正就向右,x 為負就向左 正切線稍複雜,在單位圓上 r 1,圓心在o 0,...

三角函式中「正切」「正弦」「餘弦」名字的由來

正 正對的,角度正對的邊 餘 多餘的,次要的,除 正 之外的 切 貼近,緊挨的,源於圓弧與直線的關係 三角函式 正弦 餘弦 正切 餘切 正割 餘割,這些名字的 是什麼?正餘弦,正餘切,抄正餘割bai,分別對應特定的du弦,切線,割線的長度。任何有基礎zhi幾何的文明,dao都有弦,切,割的概念。源自...

全形與半形的主要區別是什麼,全形和半形的區別是什麼?

在計算機螢幕上,一個漢字要佔兩個英文字元的位置,人們把一個英文字元所佔的位置稱為 半形 相對地把一個漢字所佔的位置稱為 全形 在漢字輸入時,系統提供 半形 和 全形 兩種不同的輸入狀態,但是對於英文字母 符號和數字這些通用字元就不同於漢字,在半形狀態它們被作為英文字元處理 而在全形狀態,它們又可作為...