1樓:王老師數理化課堂
二元一次方程組的解法!
2樓:匿名使用者
樓主你好!
接二元一次方程最主要的是理好思路和步驟,做應用題是要找出所有的關鍵數字。
然後再屢清楚他們的關係,列出式子。
接的時候要學會替代,例如:
3x+3=3y
y=x+1
再把y帶到另一是中。
3a-5b=1
19b-5a=-1
21式x 5
得到 15a-25b=5
2式x 3 得到
27b-15a=-3相加
得到 2b=2b=1
a=2這是本人經驗所得,現在我上初二了,數學一直是班上前幾,我認為數學最重要的就是思路!
希望樓主可以學習進步!
數學題有不會的還可以問我!
3樓:匿名使用者
9b-5a=-1化為5a-9b=15a-9b=1兩邊同時乘以3得到 15a-27b=3 ……①3a-5b=1兩邊同時乘以5得到 15a-25b=5 ……②①-②得到b=1 ∴a=2
4樓:匿名使用者
3a-5b=1 19b-5a=-1 21式x 5 得到 15a-25b=52式x 3 得到 27b-15a=-3相加得到 2b=2b=1 a=2
求二元一次方程組的解法 步驟
5樓:叫我jay老師
1.一元一次方程的解法:去分母→去括號→移項→合併同類項→ 化係數化成1→解。
2.二元一次方程組的解法:⑴基本思想:「消元」⑵方法:
①代入法 用一個字母代替另外一個,比如 y=多少x ,然後帶入到第二個方程,解一元一次 ②加減法 把同一個未知數係數化成一樣,用加減法消去一個未知數,再解一元一次
你可以參考一下
6樓:我又自戀了
先簡化,再代入,或者加減除。。
解二元一次方程組的基本方法有哪幾種
7樓:匿名使用者
8-2-1二元一次方程組的解法
8樓:醉意撩人殤
解二元一次方程組的基本方法:消元法;
換元法;設引數法;影象法;解向量法。
二元一次方程是指含有兩個未知數(例如x和y),並且所含未知數的項的次數都是1的方程。兩個結合在一起的共含有兩個未知數的一次方程叫二元一次方程組。每個方程可化簡為ax+by=c的形式。
一般地,使二元一次方程組的兩個方程左、右兩邊的值都相等的兩個未知數的值,叫做二元一次方程組的解。求方程組的解的過程,叫做解方程組。一般來說,一個二元一次方程有無數個解,而二元一次方程組的解有三種情況:
唯一解;有無陣列解;無解。
擴充套件資料:
二元一次方程:
1、定義
如果一個方程含有兩個未知數,並且所含未知數的次數都為1,這樣的整式方程叫做二元一次方程。
使二元一次方程兩邊的值相等的兩個未知數的值,叫做二元一次方程的解。
2、一般形式
ax+by+c=o(a,b≠0)。
3、求解方法
利用數的整除特性結合代人排除的方法去求解。(可利用數的尾數特性,也可利用數的奇偶性。)
二元一次方程組:
1、定義
由兩個一次方程組成,並含有兩個未知數的方程組叫做二元一次方程組。
一般地,二元一次方程組的兩個二元一次方程的公共解,叫做二元一次方程組的解。
2、一般形式(其中a1,a2,b1,b2不同時為零)
3、求解方法
消元法、換元法、設引數法、影象法、解向量法。
9樓:匿名使用者
解答:解二元一次方程組的基本方法有:
▪ 消元法
▪ 換元法
▪ 設引數法
▪ 影象法
▪ 解向量法
10樓:匿名使用者
二元一次方程組的四種方法是什麼?
二元一次方程組的具體解法?
11樓:雨中的人
解二元bai一次方程組的思想就是du消元。代入法:把一
zhi個方程寫成一個未dao
知數用版另一個未知數的代數式,把權這個代數式代入另一個方程,得到一個一元一次方程,就能解出了。加減消元法:先確定想消去的未知數,再把兩個方程中的這個未知數的係數變為一樣或者相反數,如果一樣,兩個方程相減,如果是相反數,兩個方程相加,這樣就能得到一個一元一次方程,然後解出結果
12樓:匿名使用者
兩方程通過加減除掉其中一個未知數,變為一元一次方程,得出其中一個未知數再代入其中一個式子中得出另一個未知數的值
二元一次方程組解法
13樓:匿名使用者
那我來說一下加減消元法。(其實加減消元法系統一點就是高斯消元法,這裡不管他)
我就不舉例子了,說一下加減消元的思想。
其實加減消元的原理就是根據我們小學學的一個定理(等式兩邊同時加上或減去一個相等的數,等式任然成立)得出的。
現在假如有一個方程組:①式和②式。現在用①式乘以某個數,②式也乘以某個數(當然這裡的某個數可以是1,也就是不乘),使某一個未知數的係數在兩個方程中相等(或者互為相反數)。
那麼現在將變換後的①式和②式相加或相減,就可以消去一個未知數了。(相加或者相減,①式的左右兩邊分別加或減②式的左右兩邊,因為②式的左右兩邊是相等的,所以①式的左右兩邊相當於是加減的同一個數)
這下明白了吧,沒看懂的話就一字一句的仔細讀,會懂的
14樓:志帥聊亮劍
二元一次方程組有兩種解法,一種是代入消元法,一種是加減消元法.
例:1)x-y=3
2)3x-8y=14
3)x=y+3
代入得3×(y+3)-8y=14
y=-1
所以x=2
這個二元一次方程組的解x=2
y=-1
以上就是代入消元法,簡稱代入法。
15樓:伍永芬懷緞
1、代入法
用y表示x,就拿你上述的題來說
8y=2x
把2x帶入3y=2x+4中
y=-4/5
2、加減法
找係數的最小公倍數
把3y=2x+4兩邊同時乘以8
把8y=2x兩邊同時乘以3
即得24y=16x+4
24y=6x
把新得的兩式相減
就能得x=-2/5
例:全班有學生56人,如果男生是女生的2/5,求男女生人數設:男生x人,女生y人
x+y=56
x=2/5y
按照我上述講的方法一解就行
怎樣巧解二元一次方程組
16樓:倒影若夢
對ax+by=m
cx+dy=n
其中,令
d=ad-bc
dx=md-bn
dy=an-mc
有x=dx/d=(md-bn)/(ad-bc)y=dy/d=(an-mc)/(ad-bc)這就是克拉默法則的二階形式,也是二元一次方程組的通解。
當然,樓主也可以巧用代入消元法和加減消元法,更簡便的進行計算,這需要視具體題目而定。
希望對樓主有所幫助,望採納!
17樓:圓錐曲線
具體問題具體分析。
可以加減消元、整體代入等等
18樓:大妞
首先對比一下兩個方程,看哪個方程更容易用一個未知數表達另一個未知數,求出來,然後將其代入到另一個方程裡,逐一解答出兩個未知數。
19樓:神武小宗師
一般就是加減消元法或者代入消元法,高階一點的話用行列式的克萊姆法則,請具體給出方程組,方便演示解法步驟。
二元一次方程組的解法
20樓:門下走狗金牛
一、消元解法
「消元」是解二元一次方程組的基本思路。所謂「消元」就是減少未知數的個數,使多元方程最終轉化為一元多次方程再解出未知數。這種將方程組中的未知數個數由多化少,逐一解決的解法,叫做消元解法。
步驟:1、選取一個係數較簡單的二元一次方程變形,用含有一個未知數的代數式表示另一個未知數;
2、將變形後的方程代入另一個方程中,消去一個未知數,得到一個一元一次方程(在代入時,要注意不能代入原方程,只能代入另一個沒有變形的方程中,以達到消元的目的);
3、解這個一元一次方程,求出未知數的值;
4、將求得的未知數的值代入①中變形後的方程中,
求出另一個未知數的值;
5、用「{」聯立兩個未知數的值,就是方程組的解;
6、最後檢驗(代入原方程組中進行檢驗,方程是否滿足左邊=右邊)。
二、加減消元法
當方程中兩個方程的某一未知數的係數相等或互為相反數時,把這兩個方程的兩邊相加或相減來消去這個未知數,從而將二元一次方程化為一元一次方程,最後求得方程組的解,這種解方程組的方法叫做加減消元法,簡稱加減法。
步驟:1、利用等式的基本性質,將原方程組中某個未知數的係數化成相等或相反數的形式;
2、再利用等式的基本性質將變形後的兩個方程相加或相減,消去一個未知數,得到一個一元一次方程(一定要將方程的兩邊都乘以同一個數,切忌只乘以一邊,然後若未知數係數相等則用減法,若未知數係數互為相反數,則用加法);
3、解這個一元一次方程,求出未知數的值;
4、將求得的未知數的值代入原方程組中的任何一個方程中,
求出另一個未知數的值;
5、用「{」聯立兩個未知數的值,就是方程組的解;
6、最後檢驗求得的結果是否正確(代入原方程組中進行檢驗,方程是否滿足左邊=右邊)。
三、影象法
二元一次方程組還可以用做影象的方法,即將相應二元一次方程改寫成一次函式的表示式在同座標系內畫出影象,兩條直線的交點座標即二元一次方程組的解
21樓:手機使用者
1.例如:3x-5z=6 (1) 以z=-3代入(2)
x+4z=-15 (2) x=-15-4*(-3)由(2)得,x=-15-4z (3) x=-15+12以(3)代入(1), x=-33(-15-4z)-5z=6 所以:x=-3,z=-3
-45-12z-5z=6
-45-17z=6
-17z=6+45
z=-3
2.用加減法的時候,兩個數同號的
用減法,異號的用加法.
因沒有時間,所以不能幫你解答所有問題.
22樓:piv鋒仔
1:x y 注:解二元一次方程主要是把異號化為同號
12x+4y=36 ① 解:將②化解為y=5-x (在式子後加①和②方便解題)
} 將y=5-x代入① (這就是代入)
x+y=5 ② 得到:12x+4(5-x)=36 (化成同號了~好解了)
解方程得x=2
將x=2代人②得y=3
所以原方程組為{x=2 y=3
2. 如上一題 解法都是一樣。。。化成一樣的時候才用+-法 乘除都要是一樣
3.如 你直接寫 解:設……為x , ……為 y (解二元一次方程題比較簡單)
( 寫出方程後)
解此方程得:x=...... y=......
原方程組為
x+y-z=4 ③
解:將②化為y=1+z
將②代入③得
x-1=4 x=3
將y=1+z x=3代入① 得
6+3(1+z)+4z=16
解得:z=1
將z=1代入③得
y=2所以原方程組為{x=3 y=2 z=1
祝你學習進步
二元一次方程組,二元一次方程組怎麼解
二元一次方程組是指含有兩個未知數 x和y 並且所含未知數的項的次數都是1的方程組。把兩個含有相同未知數的一次方程聯合在一起,那麼這兩個方程個二元一次方程組。每個方程可化簡為ax by c ab不等於0 的形式。二元一次方程組也可以由幾個2次方程組成。把兩個含有相同未知數的一次方程聯合在一起,那麼這兩...
二元一次方程組,二元一次方程組的概念
二元一次方程組的解法!解 設分子為x,分母為y y x 2 y 1 2x 由 得 y 2 x 將 代入 得 2 x 1 2x x 2x 1 2 x 3 x 3 將x 3代入 得 y 5 原方程組的解為 x 3 y 5 答 原來的分數為五分之三。設分子為x,則分母為 x 2 x x 2 1 1 2 x...
二元一次方程組的三種解法,二元一次方程組的解法有幾種?
一 消元法 1 代入消元法 用代入消元法的一般步驟是 1.選一個係數比較簡單的方程進行變形,變成 y ax b 或 x ay b的形式 2.將y ax b 或 x ay b代入另一個方程,消去一個未知數,從而將另一個方程變成一元一次方程 3.解這個一元一次方程,求出 x 或 y 值 4.將已求出的 ...