小學所有公式

2023-01-19 12:40:18 字數 8265 閱讀 1120

1樓:可靠的周倩倩

1 每份數×份數=總數

總數÷每份數=份數

總數÷份數=每份數

2    1倍數×倍數=幾倍數

幾倍數÷1倍數=倍數

幾倍數÷倍數=1倍數

3 速度×時間=路程

路程÷速度=時間

路程÷時間=速度

4 單價×數量=總價

總價÷單價=數量

總價÷數量=單價

5 工作效率×工作時間=工作總量

工作總量÷工作效率=工作時間

工作總量÷工作時間=工作效率

6 加數+加數=和

和-一個加數=另一個加數

7 被減數-減數=差

被減數-差=減數

差+減數=被減數

8 因數×因數=積

積÷一個因數=另一個因數

9 被除數÷除數=商

被除數÷商=除數

商×除數=被除數

小學數學圖形計算公式:

1 正方形

c周長 s面積 a邊長

周長=邊長×4

c=4a

面積=邊長×邊長

s=a×a

2 正方體

v:體積 a:稜長

表面積=稜長×稜長×6

s表=a×a×6

體積=稜長×稜長×稜長

v=a×a×a

3 長方形

c周長 s面積 a邊長

周長=(長+寬)×2

c=2(a+b)

面積=長×寬

s=ab

4 長方體

v:體積 s:面積 a:長 b: 寬 h:高

(1)表面積=(長×寬+長×高+寬×高)×2

s=2(ab+ah+bh)

(2)體積=長×寬×高

v=abh

5 三角形

s面積 a底 h高

面積=底×高÷2

s=ah÷2

三角形高=面積 ×2÷底

三角形底=面積 ×2÷高

6 平行四邊形

s面積 a底 h高

面積=底×高

s=ah

7 梯形

s面積 a上底 b下底 h高

面積=(上底+下底)×高÷2

s=(a+b)× h÷2

8 圓形

s面積 c周長 π d=直徑 r=半徑

(1)周長=直徑×π=2×π×半徑

c=πd=2πr

(2)面積=半徑×半徑×n

9 圓柱體

v:體積 h:高 s;底面積 r:底面半徑 c:底面周長

(1)側面積=底面周長×高

(2)表面積=側面積+底面積×2

(3)體積=底面積×高

(4)體積=側面積÷2×半徑

10 圓錐體

v:體積 h:高 s;底面積 r:底面半徑

體積=底面積×高÷3

和差問題的公式:

總數÷總份數=平均數

(和+差)÷2=大數

(和-差)÷2=小數

和倍問題

和÷(倍數-1)=小數

小數×倍數=大數

(或者 和-小數=大數)

差倍問題

差÷(倍數-1)=小數

小數×倍數=大數

(或 小數+差=大數)

植樹問題

1 非封閉線路上的植樹問題主要可分為以下三種情形:

⑴如果在非封閉線路的兩端都要植樹,那麼:

株數=段數+1=全長÷株距-1

全長=株距×(株數-1)

株距=全長÷(株數-1)

⑵如果在非封閉線路的一端要植樹,另一端不要植樹,那麼:

株數=段數=全長÷株距

全長=株距×株數

株距=全長÷株數

⑶如果在非封閉線路的兩端都不要植樹,那麼:

株數=段數-1=全長÷株距-1

全長=株距×(株數+1)

株距=全長÷(株數+1)

2 封閉線路上的植樹問題的數量關係如下

株數=段數=全長÷株距

全長=株距×株數

株距=全長÷株數

盈虧問題

(盈+虧)÷兩次分配量之差=參加分配的份數

(大盈-小盈)÷兩次分配量之差=參加分配的份數

(大虧-小虧)÷兩次分配量之差=參加分配的份數

相遇問題

相遇路程=速度和×相遇時間

相遇時間=相遇路程÷速度和

速度和=相遇路程÷相遇時間

追及問題

追及距離=速度差×追及時間

追及時間=追及距離÷速度差

速度差=追及距離÷追及時間

流水問題

順流速度=靜水速度+水流速度

逆流速度=靜水速度-水流速度

靜水速度=(順流速度+逆流速度)÷2

水流速度=(順流速度-逆流速度)÷2

濃度問題

溶質的重量+溶劑的重量=溶液的重量

溶質的重量÷溶液的重量×100%=濃度

溶液的重量×濃度=溶質的重量

溶質的重量÷濃度=溶液的重量

利潤與折扣問題

利潤=售出價-成本

利潤率=利潤÷成本×100%=(售出價÷成本-1)×100%

漲跌金額=本金×漲跌百分比

折扣=實際售價÷原售價×100%(折扣<1)

利息=本金×利率×時間

稅後利息=本金×利率×時間×(1-20%)

稜長總和:

長方體稜長和=(長+寬+高)

正方體稜長和=稜長×12

熟記下列正反比例關係:

正比例關係:

正方形的周長與邊長成正比例關係

長方形的周長與(長+寬)成正比例關係

圓的周長與直徑成正比例關係

圓的周長與半徑成正比例關係

圓的面積與半徑的平方成正比例關係

常用數量關係:

1.路程=速度×時間        速度=路程÷時間       時間=路程÷速度

工作總量=工作效率×工作時間      工作效率=工作總量÷工作時間   工作時間=工作總量÷工作效率

總價=單價×數量    單價=總價÷數量     數量=總價÷單價

總產量=單產量×面積       單產量=總產量÷面積       面積=總產量÷單產量

單位換算:

長度單位:

一公里=1千米=1000米    1米=10分米    1分米=10釐米    1釐米=10毫米

面積單位:

1平方千米=100公頃             1公頃=100公畝            1公畝=100平方米

1平方千米=1000000平方米       1公頃=10000平方米        1平方米=100平方分米

1平方分米=100平方釐米         1平方釐米=100平方毫米

體積單位:

1立方千米=1000000000立方米    1立方米=1000立方分米     1立方分米=1000立方厘米

1立方厘米=1000立方毫米    1立方分米=1升    1立方厘米=1毫升     1升=1000毫升

重量單位:

1噸=1000千克      1千克=1000克

時間單位:

一世紀=100年   一年=四季度    一年=12月    一年=365天(平年)   一年=366天(閏年)

一季度=3個月   一個月= 3旬(上、中、下)    一個月=30天(小月)   一個月=31天(大月)

一星期=7天   一天=24小時   一小時=60分    一分=60秒

一年中的大月:一月、三月、五月、七月、八月、十月、十二月(七個月)

一年中的小月:四月、六月、九月、十一月(四個月)

特殊分數值:

=0.5=50%        = 0.25 = 25%      = 0.75 = 75%

= 0.2 = 20%       = 0.4 = 40%      = 0.6 = 60%       = 0.8 = 80%

=0.125=12.5%       = 0.

375 = 37.5%       = 0.625 = 62.

5%        = 0.875 = 87.5%

算術 1、加法交換律:兩數相加交換加數的位置,和不變。 (2)你最敬重卑微者的哪一點,為什麼?

2、加法結合律:a + b = b + a

3、乘法交換律:a × b = b × a

4、乘法結合律:a × b × c = a ×(b × c)

5、乘法分配律:a × b + a × c = a × b + c

6、除法的性質:a ÷ b ÷ c = a ÷(b × c)

7、除法的性質:在除法裡,被除數和除數同時擴大(或縮小)相同的倍數,商不變。 o除以任何不是o的數都得o。

簡便乘法:被乘數、乘數末尾有o的乘法,可以先把o前面的相乘,零不參加運算,有幾個零都落下,添在積的末尾。

8、有餘數的除法: 被除數=商×除數+餘數

方程、代數與等式

等式:等號左邊的數值與等號右邊的數值相等的式子叫做等式。 等式的基本性質:等式兩邊同時乘以(或除以)一個相同的數,等式仍然成立。

方程式:含有未知數的等式叫方程式。

一元一次方程式:含有一個未知數,並且未知數的次 數是一次的等式叫做一元一次方程式。學會一元一次方程式的例法及計算。即例出代有χ的算式並計算。

代數: 代數就是用字母代替數。

代數式:用字母表示的式子叫做代數式。如:3x =ab+c

分數 分數:把單位「1」平均分成若干份,表示這樣的一份或幾分的數,叫做分數。

分數大小的比較:同分母的分數相比較,分子大的大,分子小的小。異分母的分數相比較,先通分然後再比較;若分子相同,分母大的反而小。

分數的加減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。

分數乘整數,用分數的分子和整數相乘的積作分子,分母不變。

分數乘分數,用分子相乘的積作分子,分母相乘的積作為分母。

分數的加、減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。

倒數的概念:1.如果兩個數乘積是1,我們稱一個是另一個的倒數。這兩個數互為倒數。1的倒數是1,0沒有倒數。

分數除以整數(0除外),等於分數乘以這個整數的倒數。

分數的基本性質:分數的分子和分母同時乘以或除以同一個數(0除外),分數的大小

分數的除法則:除以一個數(0除外),等於乘這個數的倒數。

真分數:分子比分母小的分數叫做真分數。

假分數:分子比分母大或者分子和分母相等的分數叫做假分數。假分數大於或等於1。

帶分數:把假分數寫成整數和真分數的形式,叫做帶分數。

分數的基本性質:分數的分子和分母同時乘以或除以同一個數(0除外),分數的大小不變。

一個數除以分數,等於這個數乘以分數的倒數。

甲數除以乙數(0除外),等於甲數乘以乙數的倒數。

數量關係計算公式

單價×數量=總價 2、單產量×數量=總產量

速度×時間=路程 4、工效×時間=工作總量

加數+加數=和 一個加數=和+另一個加數

被減數-減數=差 減數=被減數-差 被減數=減數+差

因數×因數=積 一個因數=積÷另一個因數

被除數÷除數=商 除數=被除數÷商 被除數=商×除數

比 什麼叫比:兩個數相除就叫做兩個數的比。如:2÷5或3:6或1/3 比的前項和後項同時乘以或除以一個相同的數(0除外),比值不變。

什麼叫比例:表示兩個比相等的式子叫做比例。如3:6=9:18

比例的基本性質:在比例裡,兩外項之積等於兩內項之積。

解比例:求比例中的未知項,叫做解比例。如3:χ=9:18

正比例:兩種相關聯的量,一種量變化,另一種量也隨著化,如果這兩種量中相對應的的比值(也就是商k)一定,這兩種量就叫做成正比例的量,它們的關係就叫做正比例關係。如:

y/x=k( k一定)或kx=y

反比例:兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的積一定,這兩種量就叫做成反比例的量,它們的關係就叫做反比例關係。 如:

x×y = k( k一定)或k / x = y

百分數百分數:表示一個數是另一個數的百分之幾的數,叫做百分數。百分數也叫做百分率或百分比。

把小數化成百分數,只要把小數點向右移動兩位,同時在後面添上百分號。其實,把小數化成百分數,只要把這個小數乘以100%就行了。把百分數化成小數,只要把百分號去掉,同時把小數點向左移動兩位。

把分數化成百分數,通常先把分數化成小數(除不盡時,通常保留三位小數),再把小數化成百分數。其實,把分數化成百分數,要先把分數化成小數後,再乘以100%就行了。

把百分數化成分數,先把百分數改寫成分數,能約分的要約成最簡分數。

要學會把小數化成分數和把分數化成小數的換算。

倍數與約數

最大公約數:幾個數公有的約數,叫做這幾個數的公約數。公因數有有限個。其中最大的一個叫做這幾個數的最大公約數。

最小公倍數:幾個數公有的倍數,叫做這幾個數的公倍數。公倍數有無限個。其中最小的一個叫做這幾個數的最小公倍數。

互質數: 公約數只有1的兩個數,叫做互質數。相臨的兩個數一定互質。兩個連續奇數一定互質。1和任何數互質。

通分:把異分母分數的分別化成和原來分數相等的同分母的分數,叫做通分。(通分用最小公倍數)

約分:把一個分數的分子、分母同時除以公約數,分數值不變,這個過程叫約分。

最簡分數:分子、分母是互質數的分數,叫做最簡分數。分數計算到最後,得數必須化成最簡分數。

質數(素數):一個數,如果只有1和它本身兩個約數,這樣的數叫做質數(或素數)。

整除 如果c|a, c|b,那麼c|(a±b)

如果,那麼b|a, c|a

如果b|a, c|a,且(b,c)=1, 那麼bc|a

如果c|b, b|a, 那麼c|a

合數:一個數,如果除了1和它本身還有別的約數,這樣的數叫做合數。1不是質數,也不是合數。

質因數:如果一個質數是某個數的因數,那麼這個質數就是這個數的質因數。

分解質因數:把一個合數用質因數相成的方式表示出來叫做分解質因數。

倍數特徵:

2的倍數的特徵:各位是0,2,4,6,8。

3(或9)的倍數的特徵:各個數位上的數之和是3(或9)的倍數。

5的倍數的特徵:各位是0,5。

4(或25)的倍數的特徵:末2位是4(或25)的倍數。

8(或125)的倍數的特徵:末3位是8(或125)的倍數。

7(11或13)的倍數的特徵:末3位與其餘各位之差(大-小)是7(11或13)的倍數。

17(或59)的倍數的特徵:末3位與其餘各位3倍之差(大-小)是17(或59)的倍數。

19(或53)的倍數的特徵:末3位與其餘各位7倍之差(大-小)是19(或53)的倍數。

23(或29)的倍數的特徵:末4位與其餘各位5倍之差(大-小)是23(或29)的倍數。

倍數關係的兩個數,最大公約數為較小數,最小公倍數為較大數。

互質關係的兩個數,最大公約數為1,最小公倍數為乘積。

兩個數分別除以他們的最大公約數,所得商互質。

兩個數的與最小公倍數的乘積等於這兩個數的乘積。

兩個數的公約數一定是這兩個數最大公約數的約數。

1既不是質數也不是合數。

用6去除大於3的質數,結果一定是1或5。

奇數與偶數

偶數:個位是0,2,4,6,8的數。

奇數:個位不是0,2,4,6,8的數。

偶數±偶數=偶數 奇數±奇數=奇數 奇數±偶數=奇數

偶數個偶數相加是偶數,奇數個奇數相加是奇數。

偶數×偶數=偶數 奇數×奇數=奇數 奇數×偶數=偶數

相臨兩個自然數之和為奇數,相臨自然數之積為偶數。

如果乘式中有一個數為偶數,那麼乘積一定是偶數。

奇數≠偶數

小數 自然數:用來表示物體個數的整數,叫做自然數。0也是自然數。

純小數:個位是0的小數。

帶小數:各位大於0的小數。

迴圈小數:一個小數,從小數部分的某一位起,一個數字或幾個數字依次不斷的重複出現,這樣的小數叫做迴圈小數。如3. 141414

不迴圈小數:一個小數,從小數部分起,沒有一個數字或幾個數字依次不斷的重複出現,這樣的小數叫做不迴圈小數。如3. 141592654

無限迴圈小數:一個小數,從小數部分到無限位數,一個數字或幾個數字依次不斷的重複出現,這樣的小數叫做無限迴圈小數。如3. 141414……

無限不迴圈小數:一個小數,從小數部分起到無限位數,沒有一個數字或幾個數字依次不斷的重複出現,這樣的小數叫做無限不迴圈小數。如3. 141592654……

利潤 利息=本金×利率×時間(時間一般以年或月為單位,應與利率的單位相對應)

利率:利息與本金的比值叫做利率。一年的利息與本金的比值叫做年利率。一月的利息與本金的比值叫做月利率。

內角和邊數—2乘180

小學數學所有面積公式小學數學全部公式

你好,s 底 高 2 s長方形 長 寬 s平行四邊形 底 高 s正方形 邊長的平方 s菱形 對角線乘積的一半 s圓 r2 r是半徑 s梯形 上底 下底 高 2 希望採納!摘要 1,求組合圖形面積的方法 1 分割法 將圖形進行合理分割,形成基本圖形,基本圖形面積的和就是組合圖形的面積。和法 1,求組合...

小學數學所有公式,小學數學公式大全

1 每份數 份數 總數 總數 每份數 份數 總數 份數 每份數 2 1倍數 倍數 幾倍數 幾倍數 1倍數 倍數 幾倍數 倍數 1倍數 3 速度 時間 路程 路程 速度 時間 路程 時間 速度 4 單價 數量 總價 總價 單價 數量 總價 數量 單價 5 工作效率 工作時間 工作總量 工作總量 工作效...

小學數學所有概念,公式,定理,運演算法則

1 加法交換律 2 加法結合律 3 乘法交換律 4 乘法結合律 5 乘法分配律 6 減法的運算性質 就是連續減去幾個數,等於減去幾個數的和 7 除法的運算性質 就是連續除以幾個數,等於除以幾個數的積 同分母分數加減法 分母不變,分子相加減。以分母分數加減法 分母相同分後,分子相加減 一 數的認識 一...