1樓:權123利
先看氯離子,羥基,甲基,這三類取代基的都可以看成供電子基團,因此他們可以讓苯環上的電子雲密度增加。電子雲密度增加後就會使苯環與碳正離子產生p-π共軛,從而穩定性明顯高於ccl3(氯的電負性高於碳,因此電子雲密度明顯偏向於氯,使苯環上的電子雲密度降低)。
在來就是氯離子,羥基。由於這兩類基團,不管是氯還是氧,都含有孤對電子,可以增加苯環上的電子雲密度。由於氧的電負性比碳的電負性高,但是供電子的共軛效應高於吸電子效應。
對於氯而言,雖然吸電子效應明顯但是由此而來的共振式更穩定。因此穩定性而言,羥基比氯離子穩定。
甲基僅僅是與π鍵的共軛效應,弱於前兩項但是也是供電子基團。
2樓:匿名使用者
對的啊,沒有錯,甲基為供電子基團,連的越多越能穩定碳正離子。 的次序有點問題哦。 ch3-o-c6h4-ch2 正確,
3樓:網友
苯環上的氯離子是吸電子基團。。。
4樓:卻紹闢燁燁
(ch3)3c
穩定性強於cl3cch3ch3
ccl3是吸電子基團不利於碳正離子的穩定。
碳正離子穩定性如何判斷?
5樓:心的舞臺
碳正離子周圍的基團越多則碳正離子越穩定。電荷越分散,正碳離子上正電荷越小,離子越穩定。
碳正離子的碳是sp2雜化的,其p軌道是空的,本身比較缺電子,不穩定,因此與給電子越強的基團相連越穩定。
碳正離子的結構與穩定性直接受到與之相連線的基團的影響。它們穩定性的一般規律如下:
1)苄基。型或烯丙型一般較穩定;
2)其它碳正離子是:3°>2°>1°;
可以用超共軛解釋不同碳正離子的穩定性)
碳正離子越穩定,能量越低,形成越容易。碳正離子根據結構特點不同可分為:經典碳正離子和非經典碳正離子。
簡介:
1、碳正離子的三個sp2雜化軌道應該互成120°,當位於橋頭的碳形成碳正離子時,由於橋的剛性,使得與碳相連的三個鍵無法滿足互相成120°,因此具有張力,使碳正離子不穩定。且剛性越大越。
不穩定。橋碳原子數越少,環的剛性越大。
2、與小環烷基相連的碳正離子,由於小環烷烴的香蕉鍵,會對碳正離子有很強的超共軛效應。
因此可以很好地穩定碳正離子,其穩定碳正離子的能力甚至與苯環。相當。
如何判斷碳正離子的穩定性?
6樓:最強科技檢驗員
碳正離子穩定性是碳正離子周圍的基團越多則碳正離子越穩定。電荷越分散,正碳離子上正電荷越小,離子越穩定。
穩定性通常用的數量增加的烷基鍵合到電荷軸承碳。叔碳陽離子是更穩定(並形成更容易)比仲碳陽離子,因為它們是由穩定的超共軛。主要碳正離子是非常不穩定的。
因此,反應如sñ1反應和e1的消除反應通常不如果將形成伯碳正發生。
然而,雙重鍵合有離子化的碳的碳可以穩定離子通過共振。這些陽離子作為烯丙基陽離子,ch2= ch-ch2,和苄基陽離子,c6ħ5-ch2,比大多數其他碳陽離子更穩定。能形成烯丙基或苄carbeniums分子是特別反應性的。
碳鎓離子,也可通過穩定的雜原子。
特性:碳正離子可能發生重排反應,從不太穩定的結構,以同樣穩定或較穩定的人與速率常數超過10/秒。這一事實複雜的合成途徑許多化合物。
例如,當3-戊醇中加熱用hcl水溶液中,最初形成的3-戊基碳正離子重新排列到3-戊基和2-戊基的統計混合物。這些陽離子與氯離子反應,產生約1/3 3-氯戊烷和2/3 -2-氯戊烷。
碳正離子穩定性怎樣判斷?
7樓:教育小百科達人
一、碳正離子的穩定性判斷依據。
碳正離子的穩定性,一般是烯丙基、苄基類 > 叔碳》 仲碳 > 伯碳有共同作用時候,可以加強其穩定性!吸電子基團使得電子雲偏離正碳離子,不利於分散正電荷!
二、碳正離子概念與結構。
碳正離子是一種帶正電的不穩定的有機物。與自由基一樣,是一個活潑的中間體,有一個正電荷,最外層有6個電子。
經典的碳正離子是平面結構。帶正電荷的碳原子是sp2雜化狀態,三個sp2雜化軌道與其他三個原子的軌道形成σ鍵,構成一個平面,鍵角接近120°,碳原子剩下的p軌道與這個平面垂直,p軌道中無電子。分析這種物質對發現能廉價製造幾十種當代必需的化工產品是至關重要的。
有機化學碳正離子的穩定性,有機化學 碳正離子穩定性比較
正碳離子的穩定性大小取決於碳正離子上正電荷的分佈情況,正電荷被分散的程度越大,越穩定。依此推斷可得上述結果。通常所說的碳正離子是指鍵連3個原子或基團的 最外層具有6個電子的經典碳正離子,一般以平面或近似平面的sp2雜化為主,正電荷集中在空的p軌道上。對於碳正離子而言,任何使中心碳原子上電子雲密度增加...
碳碳單,鍵碳碳雙鍵,碳碳三鍵穩定性和鍵能的排序是什麼
穩定性漸弱,鍵能漸大.碳碳雙鍵的性質主要表現在氧化 加成和加聚上。氧化劑主要是酸性 高錳酸鉀溶液,現象是高錳酸鉀溶液的紫色退去,可用於鑑別烷烴和 烯烴。加成反應中主要是和 氫氣及鹵素單質的加成。如果是和 溴水或溴的 四氯化碳反應的話會使溴水的黃色或溴的四氯化碳溶液的橙黃色退去,反應中一 摩爾雙鍵能夠...
如何通過證明矩陣a判斷線性系統的穩定性
基本是一次函式關係就是線性關係 影象為直線 不是一次函式即是二次或多次函式關係 即為非線性關係 影象為曲線 關於控制系統穩定性的問題,證明非線性系統平衡點為可穩點是否可以用雅克比矩陣負定這個來說明?syms x1 x2 for i 1 10 a 0 i 1 0.1 變化的引數 dx a x1 2 x...