1樓:匿名使用者
將do1平移,d點平移到o點,則o1點到b點,提出a1ob1三角形可求出夾角為2arcsin(1/根號6)
2樓:韓增民鬆
^依題意:bai
連線ob1,則∠dua1ob1為所求角
設正方體稜長zhi為1,ao=√
dao2/2,a1o=√(aa1^內2+ao^2)=√(1+1/2)=√6/2=ob1
cos∠a1ob1= (oa1^2+ob1^2-a1b1^2)/(2oa1•ob1)=2/3
∴a1o和do1所成角容為arccos(2/3)
求高二數學下立體幾何習題
3樓:匿名使用者
1.在正方體ac』中 m,n 分別是aa』 bb』的中點
62616964757a686964616fe59b9ee7ad9431333236363632 求直線cm和d』n所 成角的 正旋值 d』n的長是多少?
必須要求d'n長首先得知道稜長。
然後連線你的d'b',這樣d'b'n就是一個直角三角形。
假設稜長是1,那麼在底面a'b'c'd'中,可以容易求得b'd'是「根號2」。然後n是中點。b'n就是「二分之一」。
然後勾股定理。d'n方等於nb'方加上b'd'方。
2.1.已知一個球的體積等於一個正方體的體積,比較球和正方體的表面積
4/3*πr^3 = a^3-->a=(4/3*π)^(1/3)*r,s球=4*πr^2,s方=6*a^2,
3.已知矩形abcd所在平面外一點p,pa⊥平面abcd,e、f分別是 ab、pc的中點.求證:ef⊥cd
連線ac,其中點為g,f在abcd內的投影為g,eg即為ef在abcd內的投影,eg垂直於dc,故ef垂直於dc.
4.平行六面體的各條稜長都是4,在由頂點p出發的三條稜上,分別取pa=1,pb=2,pc=3,則稜錐p-abc的體積是原平行六面體的幾倍.
如果以三角形pab為底面,則s是平行六面體的1/2*`4*1/2
而高是原來的3/4倍 則體積是 再乘1/3 是1/64
5.設△abc的頂點a,b在平面α外,頂點c在平面α內,ab在α上的射影分別為a1,b1,aa1〈bb1, △abc的bc邊上的高為ad,且ad‖平面α,bc與α所成的角為θ,求平面abc與平面α所成角的大小?
ad垂直bc,ad||a a、b、c、d在同一平面 答案就是bc與a所成的角
6.已知直線a和b是異面直線,直線c平行於a且c,b不相交,求證:b和c是異面直線。
反證法。若b和c不是異面直線,又因為b,c不相交,所以b,c平行.
又因為a,c平行,所以a,b平行.
高分高二數學題(立體幾何)!
4樓:紫色智天使
先由pa⊥α得到面pac⊥α,交線為ac
正方形 得到bd⊥ac
所以bd⊥面pac,
po在面pac,上,所以bd⊥po
第二內題
e是容pa的中點
o是ac和bd的交點,在平行四邊形abcd 得出o是ac中點所以在三角形pac中oe是中位線。所以oe//pcpc在面pbc上
所以oe平行平面pbc
5樓:木易天真幻語
答:你懶我也懶,還是學勤快點好!
6樓:匿名使用者
好好看書啊,同志,我們就這樣過來的,努力一切會好的。
高二數學立體幾何題!!!!!!!!!!!!!!!
7樓:匿名使用者
1.垂直
在面abcd中,可證bd⊥fg(平面幾何)由題知,bb1⊥面abcd,所以bb1⊥fg又bb1交bd=b,所以fg⊥面b1db
又fg包含於面efg
所以面efg⊥面b1db
2.ph=1/**c3.d
8樓:匿名使用者
1。平行關係
2。在pc中點上3。a
9樓:匿名使用者
垂直(fg垂直面b1db)
三等分點,且ph/hc=2,(ph/hc=2,bg/gc=2,則,gh平行pb,,e、f分別為pa、ab的中點,ef平行pb)d
10樓:虎璟牛巨集盛
1、(1)b1d1、b1c、cd1都是各面正方形的對角線,因此它們相等,
組成一個正三角形,cd1=√2a,則cd1邊上的高就是b1至cd1的距離,作b1h⊥cd1,交cd1於h,
則b1h=√3cd1/2=√6a/2.
(2)連結ad1和bd1,
ad‖bc,ad‖平面bcd1,
作de⊥d1c,
bc⊥平面dcc1d1,bc∈平面bd1c,
平面bd1c⊥平面dcc1d1,
de⊥平面bd1c,
de=√2a/2,
de就是ad與平面bcd1的距離。
2、在平面bcc1b1上作bf⊥b1c,bf=b1c/2=√2a/2,
∵ab⊥平面bcc1b1,bf∈平面bcc1b1,
∴ab⊥bf,
∴bf是異面直線ab和b1c的公垂線,距離為√2a/2。
設敵機在p點,p點在平面abc的射影為h,因為三點仰角都是60度,則ha=hb=hc,pa=pb=pc,
由已知條件可求出〈abc=60度,
h點是三角形abc的外心,
設ac=b,bc=a,ac=b,
a和c是方程3x^2-2700x+320000=0的兩根,根據韋達定理,
a+c=900,a*c=320000/3,
根據餘弦定理,b^2=a^2+c^2-2accosb,
b^2=(a+c)^2-2ac-2accos60°,
b^2=810000-640000/3-320000/3,
b=700,設外接圓半徑=r,
根據正弦定理,b/sinb=2r,r=700√3/3,
ph/r=tan60°,
ph=(700√3/3)*√3=700。
∴敵機的高度為700米。
4、已知mn‖平面a,mm1⊥a,m1為垂足,na是平面a的斜線,斜足為a,且na⊥mn。若mn=a,m1a=b,na=c那麼m1n等於?
作nh⊥平面α,垂足h,連結ah,m1h,
na⊥mn,mn‖平面α,nh⊥mn,mn⊥平面anh,
m1h‖mn,m1h⊥平面ahn,ah∈平面anh,
m1h⊥ah,在rt三角形ahm1中,
根據勾股定理,ah^2=m1a^2-m1h^2=b^2-a^2,
在rt三角形ahn中,
nh^2=an^2-ah^2=c^2-(b^2-a^2),
在rt三角形m1nh中,根據勾股定理,
m1n^2=m1h^2+nh^2=a^2+
c^2-(b^2-a^2)=2a^2+c^2-b^2,
∴m1n=√(2a^2+c^2-b^2).
高二數學立體幾何的題 5
11樓:匿名使用者
設abc所在的圓半徑為r,則ab弧=1/3*2兀r=兀,r==3/2,則ab=根號3/2*r=3根號3/4,v=sh=253/256
高二數學立體幾何題。急求,高二數學立體幾何的題怎樣做啊?
昨天做完後,見樓上提供答案,就未提交,今天仔細看了答案,答案第一問結果與我做結果不同,特提供我做的,供參考 如圖,平面 上定點f到定直線l的距離fa 2,曲線c是平面 上到定點f和到定直線l的距離相等的動點p的軌跡 設fb 且fb 2 1 若曲線c上存在點p0,使得p0b ab,試求直線p0b與平面...
高二數學題函式,高二數學題目函式
問題 設f x 1 2x 1 x 若y g x 與y f 1 1 x 的影象關於y x對稱,那麼g 2 解法一 直接求y f 1 1 x 的反函式,方法很重要 由反函式的定義可知,y f 1 1 x 與1 x f y 的圖象一樣的,再交換x,y可得,1 y f x 是y f 1 1 x 的反函式,所...
高二數學,求定積分,高二數學定積分
在高中階段是不會用定積分直接計算的,因為牛頓萊布尼茨公式需要求出原函式。而你不會求。速度最快,效率最高的方法就是影象法。並且注意到y 9 x 2 1 2 是偶函式,只需算出0 3部分再乘以2就可以了。求圓面積還是比較簡單的。如果用牛頓萊布尼茲公式 令x 3sint 則dx 3costdt 9 x 2...