0到底是不是自然數

2021-03-07 07:50:09 字數 5068 閱讀 7172

1樓:傾蓋如故

0是自然數,0是介於-1和1之間的整數。是最小的自然數,也是有理數。0既不是正數也不是負數,而是正數和負數的分界點。0沒有倒數,0的相反數是0,0的絕對值是0,

0的平方根是0,0的立方根是0,0乘任何數都等於0,除0之外任何數的0次方等於1。0不能作為分母出現,0的所有倍數都是0。0不能作為除數。

0的大寫是:零。因為「零」筆畫較多。還有另外的寫法:〇,數的空位,用於數字中,多用於表示頁碼或年代中,如一~八位,一九九~。

擴充套件資料

標準的0這個數字由古印度人在約公元5世紀時發明。他們最早用黑點「·」表示零,後來逐漸變成了「0」。在東方國家由於數學是以運算為主(西方當時以幾何並在開頭寫了「印度人的9個數字,加上阿拉伯人發明的0符號便可以寫出所有數字)。

由於一些原因,在初引入0這個符號到西方時,曾經引起西方人的困惑, 因當時西方認為所有數都是正數,而且0這個數字會使很多算式、邏輯不能成立(如除以0),甚至認為是魔鬼數字,而被禁用。

2樓:不是苦瓜是什麼

1、根據國家標準:2023年1月,我國的大、中、小學數學教材在修訂中,規定0也是自然數。建國初,我國由於受國外一些國家的影響,當時的中小學教材一直規定自然數不包括0。

可是,目前一些發達國家都規定0也是自然數(最先由法國發起)。為了國際交流的方便,2023年《中華人民共和國國家標準》也隨之規定自然數包括0。

2、根據因數和倍數的定義:一個數能夠被另一數整除,這個數就是另一數的倍數。0除以任何非0的數都得0而沒有餘數。所以,0是任何非零自然數的倍數。

3、再根據偶數的定義(魯教版):自然數中,是2的倍數都是偶數。那麼0是偶數。

4、根據範圍:在自然數範圍內,最小偶數為0;在正整數範圍內,最小偶數為2;在負數範圍內,沒有最小偶數。

0的特殊性:

1、0是介於-1和1之間的整數。

2、0既不是正數也不是負數,而是正數和負數的分界點。

3、0沒有倒數,0的相反數是0,0的絕對值是0,0的平方根是0,0的立方根是0,0乘任何數都等於0。

4、0不能作為分母、除數或者比的後項,0的所有倍數都是0。

3樓:富諾洋綺煙

隨著九年義務教育小學數學教材(試用修訂版),把0劃歸自然數後,一些數的概念是否發生變化,引起小學了數學教師的關注。無論是在日常的教研活動,還是教師私下交流,或是因特網上的教育論壇,都有許多教師提出疑問,引發了大家的思考。

思考之一:為什麼要把0劃歸自然數

從歷史上看,國內外數學界對於0是不是自然數歷來有兩種觀點:一種認為0是自然數,另一種認為0不是自然數。建國以來,我國的中小學教材一直規定自然數不包括0。

目前,國外的數學界大部分都規定0是自然數。為了方便於國際交流,2023年頒佈的《中華人民共和國國家標準》(gb

3100-3102-93)《量和單位》(11-2.9)第311頁,規定自然數包括0。所以在近幾年進行的中小學數學教材修訂中,教材研究編寫人員根據上述國家標準進行了修改。

即一個物體也沒有,用0表示。0也是自然數。

思考之二:最小的一位數是「1」還是「0」?

0是最小的自然數,那麼最小的一位數是「1」還是「0」?在0沒有歸入自然數以前大家都很清楚,最小的一位數是1。那麼,現在0也成為自然數了,最小的一位數還是1嗎?

這是許多教師提出的疑問,筆者認為最小的一位數還是1。

因為,0表示一個物體也沒有,在記數法中是表示空位的一個符號,如3005裡「0」就分別表示這個數的十位、百位、都是空位。這次調整雖然將「0」劃歸自然數,然而對幾位數的概念並沒改變。關於「幾位數」是這樣定義的「只用一個有效數字表示的數,叫做一位數,只用兩個有效數字,其中左邊第一個數字是有效數字來表示的數就叫做兩位數……」假設0也算作一位數的話,那麼最小的兩位數是「10」還是「00」呢?

那麼最小的三位數、四位數……又是多少呢?

《九年義務教育六年制小學數學第八冊教師教學用書》第98頁「關於幾位數」是這樣敘述的:「通常在自然數裡,含有幾個數位的數,叫做幾位數。例如,2,含有一個數位的數,叫做一位數;30含有兩個數位的數,叫做兩位數;405含有三個數位的數,叫做三位數……但是要注意:

一般不說0是幾位數。

所謂最大的幾位數,最小的幾位數,通常也是在非零自然數有範圍來說。所以,最大一位數是9,最小一位數是1;最大兩位數是99,最小兩位數是10;最大三位數是999,最小三位數是100……」

綜上所述,「0」雖然是最小的自然數,但仍然不能稱為「一位數」,更不能稱為最小的一位數。

思考之三:自然數的計數單位還是「1」嗎?

大家都知道,0是自然數中最小的一個。0加1得1,1加1得2

,2加1得3,……這樣繼續下去可以得到任意一個自然數。而從自然數的排列順序可知,後面一個自然數比前面一個自然數多1。因此,任何一個自然數都是由若干個1合併而成,所以1是自然數的單位。

0可以看成是由0個1組成的自然數。

思考之四:0是其它非零自然數的倍數嗎?

《九年義務教育六年制小學數學》第十冊中,關於「數的整除」及「約數和倍數」的定義並未做任何改變,教材第54頁就有這樣的敘述:「因為0也能被2整除,所以0也是偶數」。以此類推,0能被所有非零自然數整除,根據約數倍數的定義,0是任何非零自然數的倍數,任何非零自然數都是0的約數。

但考慮到研究分解質因數、最大公約數、最小公倍數時,一般限於非零自然數範圍內,如講最小公倍數時,是把0排除在外的。為此,《九年義務教育六年制小學數學》第十冊50頁明確指出:「為了方便,以後在研究約數和倍數時,我們所說的數一般不包括0」。

這樣就避免了一些不必要的麻煩。但過去的一些說法就必須加以糾正了。例如:

「一個自然數的最小倍數是它本身」、「自然數的約數的個數是有限的」等,這樣的結論必須糾正。

思考之五:0是不是合數?

過去,在教學中,關於自然數的組成,有兩種情況:一是所有奇數和所有的偶陣列成自然數集合;二是所有的質數與所有的合數及1也組成自然數集合。現在0也成為了自然數集合的一員,因而有許多教師提出這樣的問題:

0是不是合數?

前面已經談過了,以後「在研究約數和倍數時,我們所說的數一般不包括0」,但作為一種學術研究,進行**也未嘗不可。筆者以為,0的約數有無數個,根據《九年義務教育六年制小學數學》第十冊中關於合數的定義:「一個數,如果除了1和它本身還有別的約數,這樣的數叫做合數。

」似乎應該把0劃歸為合數範圍,但仔細一想0是個特殊的自然數,因為所有非零自然數都有「本身」這個約數,如,1是1的約數,2也是2的約數……,而0這個自然數恰恰少了「本身」這個約數,因此,也不能歸為合數。試想:假設如果0是合數,那麼它能用質因數相乘的形式表現出來嗎?

這就與「每個合數都可以寫成幾個質數相乘的形式」產生了矛盾。所以,我主張把0劃歸為「既不質數,也不是合數」範圍。當然了,這需要權威機構和專家們的認定。

但我認為,目前在沒有明確0是不是合數的情況下,還是以迴避為好。

思考之六:「任何相鄰的兩個自然數是互質數」對嗎?

0沒有成為自然數時,這一結論毫無疑問是正確的。現在0也是自然數,我們只要研究「0和1」這兩個相鄰的自然數是不是質數,就行了。根據《九年義務教育六年制小學數學》第十冊中關於互質數的定義:

「公約數只有1的兩個數,叫做互質數。」筆者認為,0的約數有無數個,而1的約數只有一個,那就是它本身。綜上所述,0和1的公約數只有「1」,因此,0和1是互質數。

自然,「任何相鄰的兩個自然數是互質數」這個結論也是正確的。

4樓:匿名使用者

隨著九年義務教育小學數學教材(試用修訂版)的陸續使用,我們接到一些小學數學教師、家長和學生的來信、來電,詢問0是否是自然數的問題。現予以解答如下:

從歷史上看,國內外數學界對於0是不是自然數歷來有兩種觀點:一種認為0是自然數,另一種認為0不是自然數。建國以來,我國的中小學教材一直規定自然數不包括0。

目前,國外的數學界大部分都規定0是自然數。為了國際交流的方便,2023年頒佈的《中華人民共和國國家標準》(gb 3100~3102-93)《量和單位》(11-2.9)第311頁,規定自然數包括0。

所以在近幾年進行的中小學數學教材修訂中,教材研究編寫人員根據上述國家標準進行了修改。即一個物體也沒有,用0表示。0也是自然數。

但是,在小學階段的「整除」部分,仍然不考慮自然數0,因而在約數、倍數等概念中都不包括0。另外,一般情況下我們不說數0是幾位數,所以最小的一位數是1。

希望各位老師和網友互相轉告!謝謝!

5樓:

是的。自然數是用以計量事物的件數或表示事物次序的數 。 即用數碼0,1,2,3,4,……所表示的數 。

表示物體個數的數叫自然數,自然數由0開始(包括0), 一個接一個,組成一個無窮的集體。

6樓:景愉玉幼霜

現在的小學教材中已經把0做為自然數了

7樓:孛霽融芳荃

在以前數學教科書裡不是,但是現在的教科書都羅列成自然數了

8樓:寶從荀雪晴

不是。自然是是1,2,3,4,5,6,……………………

9樓:樓豔興鵬賦

是的忘了哪年規定出來的

10樓:水薇星

自然數用以計量事物的件數或

表示事物次序的數。即用數碼1,2,3,4,……所表示的數。自然數由1開始,一個接一個,組成一個無窮集合。

自然數集有加法和乘法運算,兩個自然數相加或相乘的結果仍為自然數,也可以作減法或除法,但相減和相除的結果未必都是自然數,所以減法和除法運算在自然數集中並不是總能成立的。自然數是人們認識的所有數中最基本的一類。為了使數的系統有嚴密的邏輯基礎,19世紀的數學家建立了自然數的兩種等價的理論——自然數的序數理論和基數理論,使自然數的概念、運算和有關性質得到嚴格的論述。

序數理論是義大利數學家g.皮亞諾提出來的。他總結了自然數的性質,用公理法給出自然數的如下定義。

自然數集n是指滿足以下條件的集合:①n中有一個元素,記作1。②n中每一個元素都能在n中找到一個元素作為它的後繼者。

③1不是任何元素的後繼者。④不同元素有不同的後繼者。⑤(歸納公理)n的任一子集m,如果1∈m,並且只要x在m中就能推出x的後繼者也在m中,那麼m=n。

自然數,即1、2、3、4……或0、1、2、3、4……。其中,0是否為自然數目前沒有定論.

0」是否包括在自然數之記憶體在爭議,有人認為自然數為正整數,即從1開始算起;而也有人認為自然數為非負整數,即從0開始算起。目前關於這個問題尚無一致意見。不過,在數論中,多采用前者;在集合論中,則多采用後者。

0到底是不是自然數,0是不是自然數,到底有什麼依據?

0是自然數,0是介於 1和1之間的整數。是最小的自然數,也是有理數。0既不是正數也不是負數,而是正數和負數的分界點。0沒有倒數,0的相反數是0,0的絕對值是0,0的平方根是0,0的立方根是0,0乘任何數都等於0,除0之外任何數的0次方等於1。0不能作為分母出現,0的所有倍數都是0。0不能作為除數。自...

0是不是自然數

0肯定是自然數.初中代數第一冊第44頁第二句已明確指出0是個自然數 是的用以計量事物的件數或表示事物次序的數 即用數碼0,1,2,3,4,所表示的數 表示物體個數的數叫自然數,自然數由0開始 包括0 一個接一個,組成一個無窮集體。自然數集有加法和乘法運算,兩個自然數相加或相乘的結果仍為自然數,也可以...

「0」為什麼也是自然數,0為什麼是自然數?

因為我國現行九年義務教育教科書和高階中學教科書 試驗修訂本 都把非負整數集叫做自然數集,記作n。這就明確指出0也是自然數集的一個元素。從教學實踐層面來說,將 0 規定為 自然數 也有著積極的現實意義。在國際上,對於 0 它是否包括在自然數之內仍然一直存在爭議,有人認為自然數為正整數,即從1開始算起 ...