tana2tan5則cosa3sina5等於多少

2021-03-07 08:56:38 字數 4721 閱讀 5327

1樓:匿名使用者

cos(a-3π/10)/sin(a-π/5)

=[cosacos(3π/10)+sinasin(3π/10)]/[sinacos(π/5)-cosasin(π/5)]

分子分母都除以cosa,得

[cos(3π/10)+tanasin(3π/10)]/[tanacos(π/5)-sin(π/5)],

把tana=2tan(π/5)代入上式,分子分母都乘以cos(π/5),得

[cos(π/5)cos(3π/10)+2sin(π/5)sin(3π/10)]/[2sin(π/5)cos(π/5)-cos(π/5)sin(π/5)]

=/[(1/2)sin(2π/5)]

=3cos(π/10)/cos(π/10)=3.

2樓:匿名使用者

cos(a-3π

/10)/sin(a-π/5)

=sin(π/2+a-3π/10)/sin(a-π/5)=sin(a+π/5)/sin(a-π/5)=(sinacosπ/5+cosasinπ/5)/(sinacosπ/5-cosasinπ/5)

=(tanacosπ/5+sinπ/5)/(tanacosπ/5-sinπ/5)

=(2tanπ/5cosπ/5+sinπ/5)/(2tanπ/5cosπ/5-sinπ/5)

=(3sinπ/5)/(sinπ/5)=3

tana=2tanπ/5則cos(a-3π/10)/sin(a-π/5)等於多少?

3樓:暖暖炊煙裊裊

結果是3。

公式一:設 α為任意角,終邊相同的角的同一三角函式的值相等:

公式二:設 α為任意角, π+ α與 α的三角函式值之間的關係:

公式三:任意角- α與 α的三角函式值之間的關係:

公式四:π- α與 α的三角函式值之間的關係:

公式五: 2π-α與 α的三角函式值之間的關係:

tana=2tanπ/5則cos(a-3π/10)/sin(a-π/5)=幾?高中題目,求詳細過程

4樓:暖暖炊煙裊裊

結果是3。

公式一:

設 α為任意角,終邊相同的角的同一三角函式的值相等:

公式二:設 α為任意角, π+ α與 α的三角函式值之間的關係:

公式三:任意角- α與 α的三角函式值之間的關係:

公式四:π- α與 α的三角函式值之間的關係:

公式五: 2π-α與 α的三角函式值之間的關係:

tanα=2tan5/π 求cos(α-3/10π)/sin(α-5/π

5樓:匿名使用者

tanα=2tanπ

/5cos(α-3π/10)/sin(α-π/5)=(cosαcos3π/10+sinαsin3π/10) / (sinαcosπ/5-cosαsinπ/5)

=(cos3π/10+tanαsin3π/10) / (tanαcosπ/5-sinπ/5)

=(cos3π/10+2tanπ/5sin3π/10) / (2tanπ/5cosπ/5-sinπ/5)

= / (2tanπ/5cosπ/5-sinπ/5)= / (2tanπ/5cosπ/5-sinπ/5)= / (2sinπ/5-sinπ/5)

=(3sinπ/5)/(sinπ/5)=3

若tanx=2tanπ\5,則cos(x-3\10π)\sin(x-π\5)=

6樓:匿名使用者

tanx=2tanπ

/5cos(x-3π/10)/sin(x-π/5)

={cosxcos3π/10+sinxsin3π/10) / (sinxcosπ/5-cosxsinπ/5)

(分子分母同除以cosx)

={cos3π/10+tanxsin3π/10) / (tanxcosπ/5-sinπ/5)

={cos3π/10+2tanπ/5sin3π/10) / (2tanπ/5cosπ/5-sinπ/5)

(分子分母同乘以cosπ/5)

={cosπ/5cos3π/10+2sinπ/5sin3π/10) / (2sinπ/5cosπ/5-cosπ/5sinπ/5)

={cosπ/5cos3π/10+sinπ/5sin3π/10+sinπ/5sin3π/10) / sinπ/5cosπ/5

={cos(3π/10-π/5)+sinπ/5sin3π/10) / sinπ/5cosπ/5

={cosπ/10+sinπ/5sin3π/10) / sinπ/5cosπ/5

={cosπ/10-1/2[cos(π/5+3π/10)-cos(π/5-3π/10)]/ sinπ/5cosπ/5

={cosπ/10-1/2[cosπ/2-cos(π/10)]/ sinπ/5cosπ/5

= [(3/2)cosπ/10] /[1/2sin2π/5]

= [3cosπ/10] /[sin2π/5]

= [3cosπ/10] /[cos(π/2-2π/5)]

= [3cosπ/10]/[cosπ/10]= 3

7樓:汪漢祺

本題主要考查對 三角函式的誘導公式 考點的理解。解題過程如下:

tanx=2tanπ/5

cos(x-3π/10)/sin(x-π/5)

={cosxcos3π/10+sinxsin3π/10) / (sinxcosπ/5-cosxsinπ/5)

(分子分母同除以cosx)

={cos3π/10+tanxsin3π/10) / (tanxcosπ/5-sinπ/5)

={cos3π/10+2tanπ/5sin3π/10) / (2tanπ/5cosπ/5-sinπ/5)

(分子分母同乘以cosπ/5)

={cosπ/5cos3π/10+2sinπ/5sin3π/10) / (2sinπ/5cosπ/5-cosπ/5sinπ/5)

={cosπ/5cos3π/10+sinπ/5sin3π/10+sinπ/5sin3π/10) / sinπ/5cosπ/5

={cos(3π/10-π/5)+sinπ/5sin3π/10) / sinπ/5cosπ/5

={cosπ/10+sinπ/5sin3π/10) / sinπ/5cosπ/5

={cosπ/10-1/2[cos(π/5+3π/10)-cos(π/5-3π/10)]/ sinπ/5cosπ/5

={cosπ/10-1/2[cosπ/2-cos(π/10)]/ sinπ/5cosπ/5

= [(3/2)cosπ/10] /[1/2sin2π/5]

= [3cosπ/10] /[sin2π/5]

= [3cosπ/10] /[cos(π/2-2π/5)]

= [3cosπ/10]/[cosπ/10]

= 3誘導公式:

規律:奇變偶不變,符號看象限。即形如(2k+1)90°±α,則函式名稱變為餘名函式,正弦變餘弦,餘弦變正弦,正切變餘切,餘切變正切。形如2k×90°±α,則函式名稱不變。

a∈(0,π/2),tana=2,則cos(a-π/4的值是多少)

8樓:匿名使用者

tana=sina/cosa=2

而sin²a+cos²a=1

a∈(0,π/2),即sina和cosa都大於0很容易得到sina=2√5/5,cosa=√5/5於是cos(a-π/4)=cosa*cosπ/4+sina*sinπ/4

=√5/5*√2/2+2√5/5*√2/2=3/√10

已知tana=2,則sin(π-a)cos(2π-a)sin(-a+3π/2)/tan(-a-π)sin(-π-a)=

9樓:匿名使用者

^sin(π-a)=sina ;

cos(2π-a)=cos(-a)=cosa;

sin(-a+3π/2)=(sin(-a)*cos(3π/2)+cos(-a)*sin3π/2)=-cosa

tan(-a-π)=-tana;sin(-π-a)=sina即原式=sina*cosa*(-cosa)/(-tana)*sina=sina*cosa/(tana)^2

=(sin2a)/8

用萬能公式:

sin2α=(2tanα)/[1+(tanα)^2]=4/(1+4)=4/5

故,原式=(4/5)/8=1/10

10樓:匿名使用者

已知tana=2,則sin(π-a)cos(2π-a)sin(-a+3π/2)/tan(-a-π)sin(-π-a)=

解:sin(π-α

)cos(2π-α)sin(-α+3π/2)/tan(-α-π)sin(-π-α)

=sinαcosαsin(3π/2-α)/=sinαcosα(-cosα)/(-tanα)sinα=cos²α/tanα=1/(tanαsec²α)

=1/[tanα(1+tan²α)]=1/[2(1+4)]=1/10

化簡sin(-a-5π)cos(a-π/2)-tan(a-3π/2)xtan(2π-a)

11樓:匿名使用者

=-sin(a+π)cos(a-π/2)-tan(a-π/2)tan(-a)

=sinasina+tan(a-π/2)tana=(sina)^2-cotatana

=(sina)^2-1

=-cos2^(a)

若3a2,則12cosa的值是多少

1 cosa 1 2cos2 a 2 1 2cos2 a 2 3 4所以原式 1 2 1 2 cos a 2 1 2 1 2cos a 2 同理1 cos a 2 2cos2 a 4 3 80 所以原式 cos a 4 cos a 4 若3 2 先看 1 2 1 2 cos2a 由cos2a 2 c...

若已定義inta3,b5,c2則表示式cab的值為

1 按照運算子優先順序,的優先順序大於 所以先計算b c的值,應為 回b 2,c 3,所以這個表示式的 答值為假,也就是值為0.然後將b c的值賦給a,那麼執行a b c之後,a 0 2 第一個方式不正確,第二個左值不能為表示式,第三個正確,第四個左值不能為表示式 c a c 2 a 0 b 5 所...

設3a2分之5,則化簡根號下2分之1cosa

1 cos a 2 sin a 2 2 1 cos a 2 2 2 2 2 回sin a 2 因為 3 答,所以sin a 2 0所以 1 cos a 2 sin a 2 sin a 2 2 cos a 2 設阿爾法大於負二分之五兀小於負3兀,化簡根號下二分之1 cos 阿爾法減兀 詳細過程 cos...