設f x 在上連續,在 0,1 內可導,且f

2021-03-10 17:47:40 字數 2770 閱讀 1000

1樓:有點悶

因為f(x)在[0,3]上連續

bai,所以

duf(x)在[0,2]上連續zhi,且在[0,2]上必有dao最大值m和最小值m,於是:

版m≤權f(0)≤m,m≤f(1)≤m,m≤f(2)≤m,故:m≤f(0)+f(1)+f(2) 3 ≤m,由介值定理知,至少存在一點c∈[0,2],使得: f(c)=f(0)+f(1)+f(2) 3 =1,又由:

f(c)=1=f(3),且f(x)在[c,3]上連續,在(c,3)內可導,滿足羅爾定理的條件,故:必存在ξ∈(c,3)?(0,3),使f′(ξ)=0.

2樓:匿名使用者

由拉格朗日du中值定理zhi,

存在a∈(1/2,1), [f(1/2)-f(1)]/(1/2-1)=f'(a), 即f'(a)=-2 ,

存在b∈(0,1/2), [f(1/2)-f(0)]/(1/2-0)=f'(a), 即f'(b)=2 ;

令φdao(x)=f'(x)-1,則φ(a)=f'(a)-1=-3, φ(b)=f'(b)-1=1 ;

則有φ(a)*φ(b)<0,根據零點定回理,存在ζ∈(b,a),使得φ答(ζ)=0, 即f'(ζ)-1=0

f'(ζ)=1得證。

ps.這邊可能缺少對f'(x)連續性的證明

3樓:茹翊神諭者

先用零點定理,

再用羅爾定理,詳情如圖所示

設函式f(x)在[0,1]上連續,在(0,1)內可導,有f(1)=0.證明:至少存在一點ε∈(0,1),使f'(x)=-f(ε)/ε。

4樓:你愛我媽呀

證明過程如下:

設g(x)=xf(x),

則g'(x)=xf'(x)+f(x) , g(1)=1f(1)=0 , g(0)=0*f(0)=0。

所以g(x)在[0,1]上連續,在(0,1)內可導且g(0)=g(1),由羅爾中值定理得:

存在一點ε∈(0,1),使g'(ε)=εf'(ε)+f(ε) =(g(1)-g(0))/(1-0)=0.

所以f'(ε)=-f(ε)/ε。

5樓:匿名使用者

證明:設g(x)=xf(x),

則g'(x)=xf'(x)+f(x) , g(1)=1f(1)=0 , g(0)=0*f(0)=0

所以g(x)在[0,1]上連續,在(0,1)內可導且g(0)=g(1),由羅爾中值定理得:

存在一點ε∈(0,1),使g'(ε)=εf'(ε)+f(ε) =(g(1)-g(0))/(1-0)=0

所以f'(ε)=-f(ε)/ε

設函式f(x)在[0,1]上連續,在(0,1)內可導,且f(0)f(1)<0.求證:存在ξ∈(0,1),使得ξf′

6樓:手機使用者

令g(x)=x2e-xf(x)du,zhi則g(x)在[0,1]上連續dao,在(回0,1)內可導,且答

g′(x)=xe-x[xf′(x)+(2-x)f(x)].因為f(0)f(1)<0,

由連續函式的零點存在定理可得,?c∈(0,1)使得f(c)=0,從而g(c)=0.

又因為g(0)=0,

故對函式g(x)在區間[0,c]上利用羅爾中值定理可得,存在ξ∈(0,1),使得g′(ξ)=0,

即:ξe-ξ[ξf′(ξ)+(2-ξ)f(ξ)]=0.又因為ξe-ξ≠0,

故ξf′(ξ)+(2-ξ)f(ξ)=0.

設函式f(x)在[0,1]上連續,在(0,1)內可導,且f(0)=0,f(1)=π/4,則方程(1+x^2)f'(x)=1在(0,1)內至少有一個實

7樓:有點悶

因為f(x)在[0,3]上連

續,所以f(x)在[0,2]上連續,且在[0,2]上必有最大值m和最小值專m,屬於是:m≤f(0)≤m,m≤f(1)≤m,m≤f(2)≤m,故:m≤f(0)+f(1)+f(2) 3 ≤m,由介值定理知,至少存在一點c∈[0,2],使得:

f(c)=f(0)+f(1)+f(2) 3 =1,又由:f(c)=1=f(3),且f(x)在[c,3]上連續,在(c,3)內可導,滿足羅爾定理的條件,故:必存在ξ∈(c,3)?

(0,3),使f′(ξ)=0.

設fx在[0,1]上連續在(0,1)內可導且f(1)=0證明存在一點ξ屬於(0,1)使2f(ξ)+ξf'(ξ)=0

8樓:寂寞的楓葉

證明:令g(x)=x^2,g(x)=g(x)*f(x)。

因為f(x)在[0,1]上連續在(0,1)內可導,且g(x)在[0,1]上連續在(0,1)內可導,那麼g(x)=g(x)*f(x)在[0,1]上連續在(0,1)內可導。

且g(x)'=(g(x)*f(x))'=(x^2*f(x))'

=x^2f'(x)+2xf(x)

而g(0)=g(0)*f(0)=0*f(0)=0g(1)=g(1)*f(1)=g(1)*0=0,即g(0)=g(1),

那麼在(0,1)記憶體在一點ξ,使g(x)'=0即g(ξ)'=0

ξ^2f'(ξ)+2ξf(ξ)=0,又ξ≠0,則ξf'(ξ)+2f(ξ)=0

9樓:

建構函式f(x)=x²f(x),則f(x)在[0,1]上連續,在(0,1)內可導,f(0)=f(1)=0,由羅爾定理,存在一點ξ∈(0,1),使f'(ξ)=0。

f'(x)=2xf(x)+x²f'(x)。

所以,2ξf(ξ)+ξ²f'(ξ)=0,所以2f(ξ)+ξf'(ξ)=0。

設函式fx在上連續,在a,b內可導,且fx不等於

由lagrange中值定理 存在x1位於copy a,b 使得f b f a f x1 b a 對f x 和e x用cauchy中值定理,存在x2位於 a,b 使得 f b f a e b e a f x2 e x2 兩式相除移項得結論。設函式f x 在 a,b 上連續,在 a,b 內可導 0 利用...

證明題,設函式fx在上連續,a,b內可導,且faa,fbb

1 令g x f x x,則g x 在 a,b 上連續 g a f a a 0,g b f b b 0 g x 在 a,b 上滿足零點定理 的條件即存在一點 a,b 使g f 0即f 2 假設a回據羅爾定理,a,b 上存在一點 答,使f 0 1 假設f a f b 易證f x 在 a,b 上滿足拉格...

設fx二階可導,且f00,f01,f

因為f x 二階來可導源,且 f 0 bai 0,f 0 1,f du 0 2,所以由l hospital法則zhi limx 0 f x xx limx 0 f dao x 1 2x 1 2lim x 0f x f 0 x 1 2f 0 1.所以lim x 0f x x x 1.故答案為 1.設f...