請問「 x 2x 1x 3x 2x 4x 3x 5x 4 」怎樣做,速度,急用

2021-03-10 21:48:30 字數 1103 閱讀 4317

1樓:賀穎卿植雲

解:(x+2)/(x+1)=1+1/(x+1)

(x+3)/(x+2)=1+1/(x+2)

利用這個思

路同樣可以有

專(x-4)/(x-3)=1-1/(x-3)

(x-5)/(x-4)=1-1/(x-4)

原式=(x+2)/

屬(x+1)-(x+3)/(x+2)-(x-4)/(x-3)+(x-5)/(x-4)

=1+1/(x+1)-[1+1/(x+2)]-[1-1/(x-3)]+1-1/(x-4)

=1/(x+1)-1/(x+2)+1/(x-3)-1/(x-4)

=1/[(x+1)(x+2)]-1/[(x-4)(x-3)]

=[(x-4)(x-3)-(x+1)(x+2)]/[(x+1)(x+2)(x-3)(x-4)]

=(-7x+12-3x-2)/[(x+1)(x+2)(x-3)(x-4)]

=-10(x-1)/[(x+1)(x+2)(x-3)(x-4)]

2樓:禰淑琴竇妍

^解:分子

du都比分母大

zhi1,所以先

dao整理為:

原式專=(x+2)/(x+1)-(x+3)/(x+2)-(x-4)/(x-3)+(x-5)/(x-4)

=[1+1/(x+1)]-[1+1/(x+2)]-[1-1/(x-3)]+[1-1/(x-4)]

=1+1/(x+1)-1-1/(x+2)-1+1/(x-3)+1-1/(x-4)

=[1/(x+1)+1/(x-3)]-[1/(x+2)+1/(x-4)]

=[(x-3)+(x+1)]/[(x+1)(x-3)]-[(x-4)+(x+2)]/[(x+2)(x-4)]

=(2x-2)/(x^屬2-2x-3)-(2x-2)/(x^2-2x-8)

=(2x-2)*[1/(x^2-2x-3)-1/(x^2-2x-8)]

=(2x-2)*[(x^2-2x-8)-(x^2-2x-3)]/[(x^2-2x-3)(x^2-2x-8)]

=(2x-2)*(-5)/[(x^2-2x-3)(x^2-2x-8)]

=(10-10x)/[(x^2-2x-3)(x^2-2x-8)]

方程(x 3X 3) X 3X 1 X 2X 1 X 4 的解為

方程 x 3 x 3 x 3 x 1 x 2 x 1 x 4 去括號得 x 6x 9 x 9 x 3x 2 x 3x 4 即 6x 18 6 6x 12 解得 x 2 方程0.3分之2x 2又3分之2 0.2分之 1.4 3x 可化為 0.3分之2x 3分之8 0.2分之 1.4 3x 上式兩邊同乘...

解題(x 1)(x 2)(x 3)(x 4)的過程

從左到右一項項乘 x n 表示x的n次方 x 1 x 2 x 3 x 4 x 2 2x x 2 x 3 x 4 x 2 3x 2 x 3 x 4 x 3 3x 2 3x 2 9x 2x 6 x 4 x 3 6x 2 11x 6 x 4 x 4 4x 3 6x 3 24x 2 11x 2 44x 6x...

x 4x 8 x 4x 16 x 2x 2 x 2x 1 x x 4 4分解因式

x 4x 8 x 4x 16 x 2 4x 4 2 x 2 2 2 x 2 4 運用整體思想和完全平方公式 x 2x 2 x 2x 1 x 2 2x 1 2 x 1 2 2 x 1 4 運用整體思想和完全平方公式 x x 4 4 x 2 4x 4 x 2 2 運用完全平方公式 x 4x 8 x 4x...