1樓:蹦迪小王子啊
一、定義不同,從兩copy者的數學表示式bai
來看,兩者的未知量x的位置du剛好互換。zhi
指數函式:自變數x在指dao數的位置上,y=a^x(a>0,a不等於1),當a>1時,函式是遞增函式,且y>0;當00.
冪函式:自變數x在底數的位置上,y=x^a(a不等於1)。a不等於1,但可正可負,取不同的值,影象及性質是不一樣的。
二、性質不同
1、冪函式:
2、指數函式:
擴充套件資料
對數的運演算法則:
1、log(a) (m·n)=log(a) m+log(a) n
2、log(a) (m÷n)=log(a) m-log(a) n
3、log(a) m^n=nlog(a) m
4、log(a)b*log(b)a=1
5、log(a) b=log (c) b÷log (c) a
指數的運演算法則:
1、[a^m]×[a^n]=a^(m+n) 【同底數冪相乘,底數不變,指數相加】
2、[a^m]÷[a^n]=a^(m-n) 【同底數冪相除,底數不變,指數相減】
3、[a^m]^n=a^(mn) 【冪的乘方,底數不變,指數相乘】
4、[ab]^m=(a^m)×(a^m) 【積的乘方,等於各個因式分別乘方,再把所得的冪相乘】
2樓:匿名使用者
比如說,y等於a的b次方。如果a是自變數,即f(x)=x^b,這是冪函式;如果b是自變數,即f(x)=a^x,這是一個指數函式
3樓:匿名使用者
一般地,形如抄y=a^x(a>0且a≠1) (x∈r)的函式襲叫做bai指數函式。也就是說以du指數為自變數,底數
zhi為大於0且不等於1的常量dao的函式稱為指數函式,它是初等函式中的一種。
一般地,形如y=x^a(a為有理數)的函式,即以底數為自變數,指數為常數的函式稱為冪函式。也是初等函式中的一種。
如何區別指數函式和冪函式
4樓:匿名使用者
1、計算方法不同
指數函式:自變數x在指數的位置上,y=a^x(a>0,a不等於1),當a>1時,函式是遞增函式,且y>0;當00.
冪函式:自變數x在底數的位置上,y=x^a(a不等於1)。a不等於1,但可正可負,取不同的值,影象及性質是不一樣的。
2、性質不同
冪函式性質:
(1)正值性質
當α>0時,冪函式y=xα有下列性質:
a、影象都經過點(1,1)(0,0);
b、函式的影象在區間[0,+∞)上是增函式;
c、在第一象限內,α>1時,導數值逐漸增大;α=1時,導數為常數;0<α<1時,導數值逐漸減小,趨近於0;
(2)負值性質
當α<0時,冪函式y=xα有下列性質:
a、影象都通過點(1,1);
b、影象在區間(0,+∞)上是減函式;(內容補充:若為x-2,易得到其為偶函式。利用對稱性,對稱軸是y軸,可得其影象在區間(-∞,0)上單調遞增。其餘偶函式亦是如此)。
c、在第一象限內,有兩條漸近線(即座標軸),自變數趨近0,函式值趨近+∞,自變數趨近+∞,函式值趨近0。
(3)零值性質
當α=0時,冪函式y=xa有下列性質:
y=x0的影象是直線y=1去掉一點(0,1)。它的影象不是直線。
指數函式性質:
(1) 指數函式的定義域為r,這裡的前提是a大於0且不等於1。對於a不大於0的情況,則必然使得函式的定義域不連續,因此不予考慮,同時a等於0函式無意義一般也不考慮。
(2) 指數函式的值域為(0, +∞)。
(3) 函式圖形都是上凹的。
(4) a>1時,則指數函式單調遞增;若0(5) 可以看出,就是當a從0趨向於無窮大的過程中(不等於0),函式曲線分別趨向於接近y軸正半軸和x軸負半軸單調遞減函式的位置,以及單調遞增函式的位置。y軸的正半軸和x軸的負半軸。水平線y=1是由減到增的過渡位置。
(6) 函式總是在某一個方向上無限趨向於x軸,並且永不相交。
(7) 指數函式無界。
(8)指數函式是非奇非偶函式。
(9)指數函式具有反函式,其反函式是對數函式,它是一個多值函式。
5樓:喵喵喵
一、定義不同,從兩者的數學表示式來看,兩者的未知量x的位置剛好互換。
指數函式:自變數x在指數的位置上,y=a^x(a>0,a不等於1),當a>1時,函式是遞增函式,且y>0;當00.
冪函式:自變數x在底數的位置上,y=x^a(a不等於1)。a不等於1,但可正可負,取不同的值,影象及性質是不一樣的。
二、性質不同
1、冪函式:
2、指數函式:
擴充套件資料
冪的比較:
1、對於底數相同,指數不同的兩個冪的大小比較,可以利用指數函式的單調性來判斷。
例如:y1=34 ,y2=35 因為3大於1所以函式單調遞增(即x的值越大,對應的y值越大),因為5大於4,所以y2 大於y1 。
2、對於底數不同,指數相同的兩個冪的大小比較,可以利用指數函式影象的變化規律來判斷。
3、對於底數不同,且指數也不同的冪的大小比較,則可以利用中間值來比較。如:
<1> 對於三個(或三個以上)的數的大小比較,則應該先根據值的大小(特別是與0、1的大小)進行分組,再比較各組數的大小即可。
<2> 在比較兩個冪的大小時,如果能充分利用「1」來搭「橋」(即比較它們與「1」的大小),就可以快速的得到答案。由指數函式的影象和性質可知「同大異小」。即當底數a和1與指數x與0之間的不等號同向。
6樓:達豐
1、自變數x的位置不同。
指數函式,自變數x在指數的位置上,y=a^x(a>0,a 不等於 1)。
冪函式,自變數 x 在底數的位置上,y=x^a(a 不等於 1). a 不等於 1,但可正可負,取不同的值,影象及性質是不一樣的。
2、性質不同。
指數函式性質:
當 a>1 時,函式是遞增函式,且 y>0;
當 00。
冪函式性質:
正值性質:
當a>0時,冪函式有下列性質:
a、影象都經過點(1,1)(0,0);
b、函式的影象在區間[0,+∞)上是增函式;
c、在第一象限內,a>1時,導數值逐漸增大;a=1時,導數為常數;0負值性質:
當a<0時,冪函式有下列性質:
a、影象都通過點(1,1);
b、影象在區間(0,+∞)上是減函式;(內容補充:若為x-2,易得到其為偶函式。利用對稱性,對稱軸是y軸,可得其影象在區間(-∞,0)上單調遞增。其餘偶函式亦是如此)。
c、在第一象限內,有兩條漸近線(即座標軸),自變數趨近0,函式值趨近+∞,自變數趨近+∞,函式值趨近0。
零值性質:
當a=0時,冪函式有下列性質:
a、y=x0的影象是直線y=1去掉一點(0,1)。它的影象不是直線。
3、值域不同。
指數函式的值域是(0,+∞),冪函式的值域是r。
7樓:匿名使用者
區別方法:觀察函式的自變數 x 所在的位置,x 在指數位置就是指數函式,x 在底數位置就是冪函式。
形如 y=a^x (a>0且a≠1) (x∈r) 的函式叫指數函式。
性質:1. 定義域和值域
x ∈ r,y >0,影象在 x 軸上方
2. 單調性
a>1 時指數函式 y=a^x 是增函式
3. 奇偶性
既不是奇函式,也不是偶函式。
形如 y=x^α (α為常數)的函式叫冪函式。即以底數為自變數,冪為因變數,指數為常數的函式稱為冪函式。例如函式y=x^0 、y=x^1、y=x^2、y=x^(-1)(注:
y=x^(-1)=1/x, y=x^0 時 x≠0)等都是冪函式。當α取非零的有理數時是比較容易理解的,而對於α取無理數時,不大容易理解。因此,在初等函式裡,不要求掌握指數為無理數的問題,只需接受它作為一個已知事實即可,因為這涉及到實數連續性的極為深刻的知識。
性質:冪函式的圖象一定會出現在第一象限內,一定不會出現在第四象限,至於是否出現在第
二、三象限內,要看其奇偶性;冪函式的圖象最多隻能同時出現在兩個象限內;如果冪函式圖象與座標軸相交,則交點一定是原點.
α 取正值
當α>0時,冪函式 y=x^α 有下列性質:
a、影象都經過點(1,1)(0,0);
b、函式的影象在區間 [0,+∞) 上是增函式;
c、在第一象限內,α>1時,導數值逐漸增大;α=1時,導數為常數;0<α<1時,導數值逐漸減小,趨近於0;
a=1 時即為一次函式 y=x(直線)
a=2 時即為二次函式 y=x²(拋物線)
α 取負值
當α<0時,冪函式 y=x^α 有下列性質:
a、影象都通過點(1,1);
b、影象在區間(0,+∞)上是減函式;若為x^(-2),易得到其為偶函式。利用對稱性,對稱軸是y軸,可得其影象在區間(-∞,0)上單調遞增。其餘偶函式亦是如此。
c、在第一象限內,有兩條漸近線(即座標軸),自變數趨近0,函式值趨近+∞,自變數趨近+∞,函式值趨近0。
a=-1 時即為反比例函式 y=1/x(雙曲線)
α 取零
當 α=0 時,冪函式 y=x^a 有下列性質:
y=x^0 的影象是直線y=1去掉一點(0,1),是兩條射線,不是連續的直線(即中間有空洞)。
8樓:andrea田靜
一個常數在上邊,一個常數在下邊。
指數函式冪函式的區別
9樓:達豐
1、自變數x的位置不同。
指數函式,自變數x在指數的位置上,y=a^x(a>0,a 不等於 1)。
冪函式,自變數 x 在底數的位置上,y=x^a(a 不等於 1). a 不等於 1,但可正可負,取不同的值,影象及性質是不一樣的。
2、性質不同。
指數函式性質:
當 a>1 時,函式是遞增函式,且 y>0;
當 00。
冪函式性質:
正值性質:
當a>0時,冪函式有下列性質:
a、影象都經過點(1,1)(0,0);
b、函式的影象在區間[0,+∞)上是增函式;
c、在第一象限內,a>1時,導數值逐漸增大;a=1時,導數為常數;0負值性質:
當a<0時,冪函式有下列性質:
a、影象都通過點(1,1);
b、影象在區間(0,+∞)上是減函式;(內容補充:若為x-2,易得到其為偶函式。利用對稱性,對稱軸是y軸,可得其影象在區間(-∞,0)上單調遞增。其餘偶函式亦是如此)。
c、在第一象限內,有兩條漸近線(即座標軸),自變數趨近0,函式值趨近+∞,自變數趨近+∞,函式值趨近0。
零值性質:
當a=0時,冪函式有下列性質:
a、y=x0的影象是直線y=1去掉一點(0,1)。它的影象不是直線。
3、值域不同。
指數函式的值域是(0,+∞),冪函式的值域是r。
指數函式的求導公式是什麼,冪函式和指數函式,求導公式
指數函式的求導du公式zhi a x lna a daox 部分導數公式 1.y c c為常回數 y 0 2.y x n y nx n 1 3.y a x y a xlna y e x y e x4.y logax y logae x y lnx y 1 x5.y sinx y cosx 6.y c...
指數函式和正整數指數函式什麼區別
前者包括負數或者複數,後者就指定了正整數了嘛 正整數指數函式是指數函式的一部分 正整數函式屬於指數函式 正整數函式的定義域是正整數集 正整數指數函式概念 一般地,形如函式y a x a o,a 1,x n 的函式叫做正整數指數函式。其中x是自變數,定義域是正整數集n 該函式具有如下特點 1 x是自變...
對數函式,指數函式,冪函式怎麼學
沒什麼麻煩的,記住影象,定義,公式,再做點題就可以了 對數函式 一般地,如果a a大於0,且a不等於1 的b次冪等於n,那麼數b叫做以a為底n的對數,記作log an b,其中a叫做對數的底數,n叫做真數。對數函式的公理化定義 設 滿足 1 是 上的連續函式 2 有 3 對於 且 有 稱 是以 為底...