1樓:匿名使用者
設方程ax+by+cz+d=0,因為平面過x軸,所以法線在x軸上投影為零,即a=0 ,又平面過x軸時必過原點,將原點帶入得d=0 ,所以by+cz=0,將點p帶入得,2b+3c=0,即b=2/3c,所以方程為2/3cy+cz=0,約掉c,化簡一下就得方程為2y+3z=0
求通過x軸和點(4,-3,-1)的平面方程
2樓:理工李雲龍
通過x軸,則該平面垂直於y-z平面,且通過原點。
設平面方程為ay bz=0,把點m的方程代入。
-3ab=0,b=3a,故平面方程為ay 3az=0,令a=1,y 3z=0。
點線式:
在 x 軸上取兩點 o(0,0,0),a(1,0,0),那麼平面內有兩向量 oa=(1,0,0),ob=(4,-3,-1),所以平面的法向量為 oa×ob=(1,0,0)×(4,-3,-1)=(0,1,-3),(叉乘會吧?第一行寫 i,j,k ,後面兩行是 1,0,0 和 4,-3,-1,然後計算三階行列式)
因此平面方程為 0*(x-4)+1*(y+3)-3*(z+1)=0 ,
化簡得 y-3z=0 .
3樓:匿名使用者
設所求平面的法向量為m=(p,1,q),a(4,-3,-1),x軸的方向向量是n=(1,0,0),則
m*n=p=0,
m*oa=4p-3-q=0,q=-3,
∴m=(0,1,-3).
∴所求平面方程是y+3-3(z+1)=0,即y-3z=0.
4樓:匿名使用者
通過x軸的平面方程《一般型》為: by+cz=0
代入座標值 -3b-c=0 => c=-3b
∴ by-3bz=0 => y-3z=0 為所求 。
5樓:
設方程ax+by+cz+d=0,因為平面過x軸,所以法線在x軸上投影為零,即a=0 ,又平面過x軸時必過原點,將原點帶入得d=0 ,所以by+cz=0
將點m代入-3b+c=0,c=3b
by+3bz=0,y+3z=0
6樓:藍夢影幻夕
在 x 軸上取兩點 o(0,0,0),a(1,0,0),那麼平面內有兩向量 oa=(1,0,0),ob=(4,-3,-1),所以平面的法向量為 oa×ob=(1,0,0)×(4,-3,-1)=(0,1,-3),(叉乘會吧?第一行寫 i,j,k ,後面兩行是 1,0,0 和 4,-3,-1,然後計算三階行列式)
因此平面方程為 0*(x-4)+1*(y+3)-3*(z+1)=0 ,
化簡得 y-3z=0 .
求通過x軸和點(4, 3, 1)的平面方程
通過x軸,則該平面垂直於y z平面,且通過原點。設平面方程為ay bz 0,把點m的方程代入。3ab 0,b 3a,故平面方程為ay 3az 0,令a 1,y 3z 0。點線式 在 x 軸上取兩點 o 0,0,0 a 1,0,0 那麼平面內有兩向量 oa 1,0,0 ob 4,3,1 所以平面的法向...
求過點1,2,3且與平面2x3yz20垂直的
求過點 1,1,0 且與平du 面2x 3y z 2 0垂直的直zhi線方程平面dao2x 3y z 2 0的法 專線屬向量為 過點 1,1,0 的直線垂直於該平面,因此平面的法線向量就是該直線的方向數,故直線方程為 x 1 2 y 1 3 z.求過點m 1,2,3 且與平面2x y 3z 5 0垂...
通過z軸和點( 3,1, 2)求平面方程
第一bai 種方法 過z軸的平面方du程系是 ax by 0又平面zhi過點 3,1,2 3a b 0b 3a x 3y 0 通過daoz軸和點 3,1,2 的平面方程是版x 3y 0第二權種方法 設方程為 ax by 0 通過z軸的平面的通式 代入座標 3a b 0 b 3a 取 a 1 b 3 ...