求定積分(下限為 2,上限為 2)dx等於多少?(答案為什麼是12)

2021-03-22 00:26:23 字數 4486 閱讀 3786

1樓:匿名使用者

下一次再遇到有√(x²-1)的,就

設x=secθ;如果是√(x²+1),設x=tanθ;如果是√(1-x²),設x=sinθ;如果是√(x²-a),設x=√asecθ……但是要注意積分的上下限,這個根號開出來以後應該寫成絕對值,再根據上下限來確定正負!

2樓:數迷

先求出不定積分

為arctan√(x²-1)+c

帶入即得答案

利用定積分幾何意義說明:∫(上限2)(下限-2)√(4-x²)dx=2π

3樓:匿名使用者

表示曲線y=√(4-x^2)與直線y=0,x=-2,x=2圍成的區域的面積。

積分下限為2,上限為根號2的定積分∫[(1)/(x√(x^(2)-1))]dx 如何解?

4樓:匿名使用者

^設x=1/cost t=arc cos(1/x)dx=(sint/cos²t)dt

x*√(x²-1)=(1/cost)*sint/cost=sint/cos²t

所以∫[(1)/(x√(x^(2)-1))]dx=∫(sint/cos²t)*/(sint/cos²t)*dt=∫dt

=t=arc cos(1/x) i(2, √2)=arc cos(√2/2)-arc cos(1/2)= π/4-π/3

=-π/12

5樓:匿名使用者

設t=√(x^2-1),則dt=xdx/√(x^2-1),

原式=∫<1,3>dt/(1+t^2)=arctant|<1,3>=arctan3-π/4.

6樓:

令x=sec t就行了最後就剩下dt

用定積分的定義計算定積分 ∫上限2下限1 (x+1)dx 求詳細為什麼是3.5

7樓:

從定積分的定義來看,此積分可以看作是對於一個梯形求面積,該梯形一條腰為y=x+1,另一條腰為x軸,上下底為平行於y軸的線段。於是可知,該梯形上底為y1=x1+1=1+1=2,下底為y2=x2+1=2+1=3,高為2-1=1,於是梯形面積=(2+3)×1÷2=2.5。

不是3.5。實際上用定積分公式計算也是2.5.

8樓:匿名使用者

積分(x+1)dx=x^2/2+x|(x:1-->2)=(4/2+2)-(1/2+1)

=4-1.5

=2.5

求定積分∫1/x²√(1+x²) dx上限√3下限1

9樓:drar_迪麗熱巴

答案是√2 - 2/√3

解題過程如下:

∫[1→√3] 1/[x²√(1+x²)] dx

令x=tanu,則√(1+x²)=secu,dx=sec²udu,u:π/4→π/3

=∫[π/4→π/3] [1/(tan²usecu)](sec²u) du

=∫[π/4→π/3] secu/tan²u du

=∫[π/4→π/3] cosu/sin²u du

=∫[π/4→π/3] 1/sin²u dsinu

=-1/sinu ||[π/4→π/3]

=√2 - 2/√3

定積分是積分的一種,是函式f(x)在區間[a,b]上積分和的極限。

這裡應注意定積分與不定積分之間的關係:若定積分存在,則它是一個具體的數值(曲邊梯形的面積),而不定積分是一個函式表示式。

定理一般定理

定理1:設f(x)在區間[a,b]上連續,則f(x)在[a,b]上可積。

定理2:設f(x)區間[a,b]上有界,且只有有限個間斷點,則f(x)在[a,b]上可積。

定理3:設f(x)在區間[a,b]上單調,則f(x)在[a,b]上可積。

牛頓-萊布尼茨公式

定積分與不定積分看起來風馬牛不相及,但是由於一個數學上重要的理論的支撐,使得它們有了本質的密切關係。把一個圖形無限細分再累加,這似乎是不可能的事情,但是由於這個理論,可以轉化為計算積分。

10樓:匿名使用者

∫[1→√3] 1/[x²√(1+x²)] dx令x=tanu,則√(1+x²)=secu,dx=sec²udu,u:π/4→π/3

=∫[π/4→π/3] [1/(tan²usecu)](sec²u) du

=∫[π/4→π/3] secu/tan²u du=∫[π/4→π/3] cosu/sin²u du=∫[π/4→π/3] 1/sin²u dsinu=-1/sinu ||[π/4→π/3]=√2 - 2/√3

【數學之美】團隊為您解答,若有不懂請追問,如果解決問題請點下面的「選為滿意答案」。

急求!!!!∫dx/x√(x^2-1) (定積分的上限是-1,下限是-2),萬分感謝!!!!

11樓:匿名使用者

請注意x∈[-2,-1],被積函抄

數1/[x√(x^2-1)]<0,積分結果應為負。

所以bai向【根號】外面提取dux應該為-x,有個負號下面是zhi湊微dao法,注意對根號裡面向外提取x對x符號的理解∫(-2,-1)dx/[x√(x^2-1)]=∫(-2,-1)dx/[-x^2√(1-1/x^2)]=∫(-2,-1))1/[√(1-1/x^2)]d(1/x)=arcsin(1/x)|(-2,-1)

=[-π/2-(-π/6)]

=-π/3

求定積分∫[-√2,-2]1/x√(x²-1)dx

12樓:匿名使用者

解題過程如下:

擴充套件資料

設λ=max(即λ是最大的區間長度),如果當λ→0時,積分和的極限存在,則這個極限叫做函式f(x) 在區間[a,b]的定積分,並稱函式f(x)在區間[a,b]上可積。

被積函式不一定只有一個變數,積分域也可以是不同維度的空間,甚至是沒有直觀幾何意義的抽象空間。

設f(x)在區間[a,b]上連續,則f(x)在[a,b]上可積。設f(x)區間[a,b]上有界,且只有有限個間斷點,則f(x)在[a,b]上可積。設f(x)在區間[a,b]上單調,則f(x)在[a,b]上可積。

常用積分公式:

1)∫0dx=c

2)∫x^udx=(x^(u+1))/(u+1)+c

3)∫1/xdx=ln|x|+c

4)∫a^xdx=(a^x)/lna+c

5)∫e^xdx=e^x+c

6)∫sinxdx=-cosx+c

7)∫cosxdx=sinx+c

8)∫1/(cosx)^2dx=tanx+c

9)∫1/(sinx)^2dx=-cotx+c

10)∫1/√(1-x^2) dx=arcsinx+c

11)∫1/(1+x^2)dx=arctanx+c

12)∫1/(a^2-x^2)dx=(1/2a)ln|(a+x)/(a-x)|+c

13)∫secxdx=ln|secx+tanx|+c

14)∫1/(a^2+x^2)dx=1/a*arctan(x/a)+c

15)∫1/√(a^2-x^2) dx=(1/a)*arcsin(x/a)+c

16) ∫sec^2 x dx=tanx+c;

17) ∫shx dx=chx+c;

18) ∫chx dx=shx+c;

19) ∫thx dx=ln(chx)+c;

13樓:drar_迪麗熱巴

解題過程如下圖:

定積分是積分的一種,是函式f(x)在區間[a,b]上積分和的極限。

這裡應注意定積分與不定積分之間的關係:若定積分存在,則它是一個具體的數值(曲邊梯形的面積),而不定積分是一個函式表示式。

定理一般定理

定理1:設f(x)在區間[a,b]上連續,則f(x)在[a,b]上可積。

定理2:設f(x)區間[a,b]上有界,且只有有限個間斷點,則f(x)在[a,b]上可積。

定理3:設f(x)在區間[a,b]上單調,則f(x)在[a,b]上可積。

常用積分公式:

1)∫0dx=c

2)∫x^udx=(x^(u+1))/(u+1)+c

3)∫1/xdx=ln|x|+c

4)∫a^xdx=(a^x)/lna+c

5)∫e^xdx=e^x+c

6)∫sinxdx=-cosx+c

7)∫cosxdx=sinx+c

8)∫1/(cosx)^2dx=tanx+c

求定積分∫(上限為2,下限為1) 根號(x^2-1) dx/x

14樓:匿名使用者

^先求不定積分

∫√(x^2-1)/xdx=∫√(1-x^-2)dx; 設x^-2=u^2; dx=-udu/x^-3; ∫√(1-x^2)dx=-∫u√(1-u^2)du/(x^-3)=(1-u^2)^(3/2)/3x^3+c=(1-x^-2)^(3/2)/3x^3+c。再把積分割槽間代入就行了。

下限為上限為0的0的定積分是多少

問題本身就是一個錯誤命題,據我目前所掌握的知識,這個命題是錯誤的。是0,這是一個廣義積分,它 lim 0dx 0 上限為0,下限為0 定積分的上下限可以相等嗎 但是定積分的定義中,從實際北景出發,規定了積分上限必須大於積分下限的。而為了今後計算方便,所以定積分中規定 當積分上限與下限相等時,它的值為...

1x2dx積分上限1下限0求定積分

令x sina 則 1 x2 cosa dx cosada x 1,a 回 2x 0,a 0 原式 0 答 2 cos2ada 0 2 1 cos2a 2da 1 4 0 2 1 cos2a d2a 1 4 2a sin2a 0 2 1 4 2 2 sin 1 4 2 0 sin0 4 計算定積分 ...

定積分xxexdx下限2上限

當 x 0 時 x x 0 因此原式 0,2 2xe 專x dx 2xe x 0,2 0,2 2e x dx 2xe x 2e x 0,2 4e 2 2e 2 0 2 2e 2 2 屬 求1為上限,1為下限的定積分 e x e x 1 dx 1,1 e x e x 1 dx 1,1 1 e x 1 ...