求定積分上限2,下限1根號下x1xdx,過程

2021-03-03 20:30:21 字數 2109 閱讀 9152

1樓:匿名使用者

首先來告訴你方法,遇到這種根號下的源式子,一種很通俗的方bai法就是將這個du根號替zhi換成另一個變數

計算定積分:上限1/2 下限0 根號(1-x^2)dx

2樓:所示無恆

令x=sinθ

dx=cosθdθ

x=1/2,θ=π/6

x=0,θ=0

原式=∫(π/6,0)cosθ*cosθdθ=∫(π/6,0)(1+cos2θ)/2*1/2d(2θ)=1/4*(sin2θ+2θ)|(π/6,0)=√3/8+π/12

3樓:drar_迪麗熱巴

答案為√3/8+π

/12解題過程如下:

令x=sinθ

dx=cosθdθ

x=1/2,θ=π/6

x=0,θ=0

原式=∫(π/6,0)cosθ*cosθdθ

=∫(π/6,0)(1+cos2θ)/2*1/2d(2θ)

=1/4*(sin2θ+2θ)|(π/6,0)

=√3/8+π/12

定積分是積分的一種,是函式f(x)在區間[a,b]上積分和的極限。

這裡應注意定積分與不定積分之間的關係:若定積分存在,則它是一個具體的數值(曲邊梯形的面積),而不定積分是一個函式表示式,它們僅僅在數學上有一個計算關係(牛頓-萊布尼茨公式),其它一點關係都沒有!

定理一般定理

定理1:設f(x)在區間[a,b]上連續,則f(x)在[a,b]上可積。

定理2:設f(x)區間[a,b]上有界,且只有有限個間斷點,則f(x)在[a,b]上可積。

定理3:設f(x)在區間[a,b]上單調,則f(x)在[a,b]上可積。

牛頓-萊布尼茨公式

定積分與不定積分看起來風馬牛不相及,但是由於一個數學上重要的理論的支撐,使得它們有了本質的密切關係。把一個圖形無限細分再累加,這似乎是不可能的事情,但是由於這個理論,可以轉化為計算積分。

4樓:我不是他舅

令x=sina

dx=cosada

x=1/2,a=π

/6x=0,a=0

原式=∫(0,π/6)cosa*cosada=∫(0,π/6)(1+cos2a)/2*1/2d(2a)=1/4*(sin2a+2a)(0,π/6)=√3/8+π/12

求定積分∫上限2,下限1 (根號x-1 ) /x dx,要解答過程?

5樓:惆悵如雲

將原式拆解為根號x分之一減去x分之一然後分別在1到2上求積分!前項積出來是二倍根號後項積為-lnx.後面就不用我說了吧!結果應該為2(根號2-1)-ln2

6樓:匿名使用者

我理解(根號x-1 )的意思是 根號(x-1)。解答如下:

令根號(x-1)=t,則x=t^2+1,dx=2tdt

求定積分∫(上限為2,下限為1) 根號(x^2-1) dx/x

7樓:匿名使用者

^先求不定積分

∫√(x^2-1)/xdx=∫√(1-x^-2)dx; 設x^-2=u^2; dx=-udu/x^-3; ∫√(1-x^2)dx=-∫u√(1-u^2)du/(x^-3)=(1-u^2)^(3/2)/3x^3+c=(1-x^-2)^(3/2)/3x^3+c。再把積分割槽間代入就行了。

求定積分∫上限2,下限1 dx / (根號下4-x^2),要過程?

8樓:翀沄

令x=2sint 則dx=2costdt

當x=1時 t=π/6 當x=2時 t=π/2

原式=∫上限π/2,下限π/6 (2costdt)/2cost=∫上限π/2,下限π/6 dt=π/2-π/6=π/3

定積分計算問題 ∫(上限2 下限0)x^2/根號下(2x-x^2) dx 怎麼算 求詳細過程

9樓:匿名使用者

關於變成只有上限π/2下限0,

估計是因為被積函式是偶函式,

而考慮上限0下限-π/2這部分時,

只需2倍計算前者即可。

定積分xxexdx下限2上限

當 x 0 時 x x 0 因此原式 0,2 2xe 專x dx 2xe x 0,2 0,2 2e x dx 2xe x 2e x 0,2 4e 2 2e 2 0 2 2e 2 2 屬 求1為上限,1為下限的定積分 e x e x 1 dx 1,1 e x e x 1 dx 1,1 1 e x 1 ...

1x2dx積分上限1下限0求定積分

令x sina 則 1 x2 cosa dx cosada x 1,a 回 2x 0,a 0 原式 0 答 2 cos2ada 0 2 1 cos2a 2da 1 4 0 2 1 cos2a d2a 1 4 2a sin2a 0 2 1 4 2 2 sin 1 4 2 0 sin0 4 計算定積分 ...

求定積分(下限為 2,上限為 2)dx等於多少?(答案為什麼是12)

下一次再遇到有 x 1 的,就 設x sec 如果是 x 1 設x tan 如果是 1 x 設x sin 如果是 x a 設x asec 但是要注意積分的上下限,這個根號開出來以後應該寫成絕對值,再根據上下限來確定正負!先求出不定積分 為arctan x 1 c 帶入即得答案 利用定積分幾何意義說明...