根號的意義是什麼

2021-03-04 06:00:55 字數 4816 閱讀 8429

1樓:百度使用者

其實樓上是從代數的角度說的,如果你還在上初中的話,建議你從幾何角度理解:一個正方形面積為四,求它的邊長是多少,這個過程就進行了一次根號運算。 根號的由來 現在,我們都習以為常地使用根號(如 等等),並感到它使用起來既簡明又方便。

那麼,根號是怎樣產生和演變成現在這種樣子的呢? 古時候,埃及人用記號「┌」表示平方根。印度人在開平方時,在被開方數的前面寫上ka。

阿拉伯人用 表示 。2023年前後,德國人用一個點「.」來表示平方根,兩點「..

」表示4次方根,三個點「...」表示立方根,比如,.3、..

3、...3就分別表示3的平方根、4次方根、立方根。到十六世紀初,可能是書寫快的緣故,小點上帶了一條細長的尾巴,變成「 」。

2023年,路多爾夫在他的代數著作中,首先採用了根號,比如他寫 4是2, 9是3,並用 8, 8表示 , 。但是這種寫法未得到普遍的認可與採納。 與此同時,有人採用「根」字的拉丁文radix中第一個字母的大寫r來表示開方運算,並且後面跟著拉丁文「平方」一字的第一個字母q,或「立方」的第一個字母c,來表示開的是多少次方。

例如,現在的 ,當時有人寫成r.q.4352。

現在的 ,用數學家邦別利(1526—2023年)的符號可以寫成r.c.?7p.

r.q.14╜,其中「?

╜」相當於今天用的括號,p相當於今天用的加號(那時候,連加減號「+」「-」還沒有通用)。 直到十七世紀,法國數學家笛卡爾(1596—2023年)第一個使用了現今用的根號「 」。在一本書中,笛卡爾寫道:

「如果想求 的平方根,就寫作 ,如果想求 的立方根,則寫作 。」 這是出於什麼考慮呢?有時候被開方數的項數較多,為了避免混淆,笛卡爾就用一條橫線把這幾項連起來,前面放上根號√(不過,它比路多爾夫的根號多了一個小鉤)就為現在的根號形式。

現在的立方根符號出現得很晚,一直到十八世紀,才在一書中看到符號 的使用,比如25的立方根用表示。以後,諸如 等等形式的根號漸漸使用開來。 由此可見,一種符號的普遍採用是多麼地艱難,它是人們在悠久的歲月中,經過不斷改良、選擇和淘汰的結果,它是數家們集體智慧的結晶,而不是某一個人憑空臆造出來的,不是從天上掉下來的。

實數是什麼? 初中的時候,我們就學過實數的定義:有理數和無理數統稱為實數。

呵呵,事實上,可完全沒有這麼簡單。事實上,從人類第一次發現無理數的存在到真正弄清楚什麼是實數,中間過去了2000多年,那已經是19世紀末了,數學家意識到必須為微積分奠定一個堅實的邏輯起點了。這個邏輯上的起點就是關於實數的一些基本定理,這些定理第一次準確界定了實數的內涵。

在那之前很久,數學家們已經通曉了極限的運算,極限運算是微積分的基礎,但是從來沒有人去說明過極限運算是可行的,或者說在怎樣一個範圍內極限運算是可行的。舉一個例子,在整數範圍內乘法運算總是可以的,因為運算結果一定是整數,但除法運算就不可以了,如果你要討論除法運算,你就必須在整個有理數的範圍內進行。但在有理數的範圍內,開方運算也是不行的,要進行開方運算,你必須在代數數的範圍內。

那麼,數學家和其它科學家已經廣泛使用微積分的時候,自然有人會問,我們是在那個數集上進行極限運算的呢?會不會發生什麼混亂呢?當然,人們願意仍然把這個數集稱為實數集,但現在的問題是,實數集裡面應該有些什麼,使得極限運算可以安全的進行?

一般來說,人們會假定由所有小陣列成的數集就是實數集。但會不會有用這些小數也表示不了的實數呢? 最後,柯西第一次解決了這個問題,用完備性公理作出了實數集和的明確的定義。

他的做法是,作出所有的有理數的數列,然後把所有收斂的數列按極限相同的等價關係進行分類,最後把這些所有的類的集合定義為實數集(有理數集同構於它的一個子集,因此它確實是有理數集的一個擴充)。柯西論證了這個集合上進行極限運算是可以的,這就是實數集的完備性。 後來,戴德金用分割給出了實數完備性的另一個等價定義,並且證明了無限小數(把有限小數做成後面是9的迴圈小數)的集合滿足完備性公理,因此說明了無限小數的集合就是實數集合。

至此,科學家們才鬆了一口氣,繼續放心的使用微積分

2樓:百度使用者

如果x平方=y,那麼我們就可以說x=更號y 一個數(非負數)的平方根有兩個,一正一負,算數平方根就是指這個數的正平方根 根號36=6,是算36的算數平方根(正平方根),但36的平方根則是正負6

根號的意義是什麼?

3樓:demon陌

一般來說,根號多少,就是求這個數的算術平方根根號36=6開平方:比如36的平方根那就應該是:正負636的算術平方根就是:正6

如果只是根號a:那就表示要求你求這個數的算術平方根,只是正根如果問的是開平方:那就表示要求你求這個數的平方根,也就是正負兩個根號是一個數學符號。

根號是用來表示對一個數或一個代數式進行開方運算的符號。若aⁿ=b,那麼a是b開n次方的n次方根或a是b的1/n次方。開n次方手寫體和印刷體用表示,被開方的數或代數式寫在符號左方√ ̄的右邊和符號上方一橫部分的下方共同包圍的區域中,而且不能出界。

4樓:匿名使用者

其實樓上是從代數的角度說的,如果你還在上初中的話,建議你從幾何角度理解:一個正方形面積為四,求它的邊長是多少,這個過程就進行了一次根號運算。

根號的由來

現在,我們都習以為常地使用根號(如 等等),並感到它使用起來既簡明又方便。那麼,根號是怎樣產生和演變成現在這種樣子的呢?

古時候,埃及人用記號「┌」表示平方根。印度人在開平方時,在被開方數的前面寫上ka。阿拉伯人用 表示 。

2023年前後,德國人用一個點「.」來表示平方根,兩點「..」表示4次方根,三個點「...

」表示立方根,比如,.3、..3、...

3就分別表示3的平方根、4次方根、立方根。到十六世紀初,可能是書寫快的緣故,小點上帶了一條細長的尾巴,變成「 」。2023年,路多爾夫在他的代數著作中,首先採用了根號,比如他寫 4是2, 9是3,並用 8, 8表示 , 。

但是這種寫法未得到普遍的認可與採納。

與此同時,有人採用「根」字的拉丁文radix中第一個字母的大寫r來表示開方運算,並且後面跟著拉丁文「平方」一字的第一個字母q,或「立方」的第一個字母c,來表示開的是多少次方。例如,現在的 ,當時有人寫成r.q.

4352。現在的 ,用數學家邦別利(1526—2023年)的符號可以寫成r.c.?

7p.r.q.

14╜,其中「?╜」相當於今天用的括號,p相當於今天用的加號(那時候,連加減號「+」「-」還沒有通用)。

直到十七世紀,法國數學家笛卡爾(1596—2023年)第一個使用了現今用的根號「 」。在一本書中,笛卡爾寫道:「如果想求 的平方根,就寫作 ,如果想求 的立方根,則寫作 。」

這是出於什麼考慮呢?有時候被開方數的項數較多,為了避免混淆,笛卡爾就用一條橫線把這幾項連起來,前面放上根號√(不過,它比路多爾夫的根號多了一個小鉤)就為現在的根號形式。

現在的立方根符號出現得很晚,一直到十八世紀,才在一書中看到符號 的使用,比如25的立方根用表示。以後,諸如 等等形式的根號漸漸使用開來。

由此可見,一種符號的普遍採用是多麼地艱難,它是人們在悠久的歲月中,經過不斷改良、選擇和淘汰的結果,它是數家們集體智慧的結晶,而不是某一個人憑空臆造出來的,不是從天上掉下來的。

實數是什麼?

初中的時候,我們就學過實數的定義:有理數和無理數統稱為實數。呵呵,事實上,可完全沒有這麼簡單。

事實上,從人類第一次發現無理數的存在到真正弄清楚什麼是實數,中間過去了2000多年,那已經是19世紀末了,數學家意識到必須為微積分奠定一個堅實的邏輯起點了。這個邏輯上的起點就是關於實數的一些基本定理,這些定理第一次準確界定了實數的內涵。

在那之前很久,數學家們已經通曉了極限的運算,極限運算是微積分的基礎,但是從來沒有人去說明過極限運算是可行的,或者說在怎樣一個範圍內極限運算是可行的。舉一個例子,在整數範圍內乘法運算總是可以的,因為運算結果一定是整數,但除法運算就不可以了,如果你要討論除法運算,你就必須在整個有理數的範圍內進行。但在有理數的範圍內,開方運算也是不行的,要進行開方運算,你必須在代數數的範圍內。

那麼,數學家和其它科學家已經廣泛使用微積分的時候,自然有人會問,我們是在那個數集上進行極限運算的呢?會不會發生什麼混亂呢?當然,人們願意仍然把這個數集稱為實數集,但現在的問題是,實數集裡面應該有些什麼,使得極限運算可以安全的進行?

一般來說,人們會假定由所有小陣列成的數集就是實數集。但會不會有用這些小數也表示不了的實數呢?

最後,柯西第一次解決了這個問題,用完備性公理作出了實數集和的明確的定義。他的做法是,作出所有的有理數的數列,然後把所有收斂的數列按極限相同的等價關係進行分類,最後把這些所有的類的集合定義為實數集(有理數集同構於它的一個子集,因此它確實是有理數集的一個擴充)。柯西論證了這個集合上進行極限運算是可以的,這就是實數集的完備性。

後來,戴德金用分割給出了實數完備性的另一個等價定義,並且證明了無限小數(把有限小數做成後面是9的迴圈小數)的集合滿足完備性公理,因此說明了無限小數的集合就是實數集合。

至此,科學家們才鬆了一口氣,繼續放心的使用微積分

5樓:匿名使用者

根號36是36的算術平方根=6

根號36的算術平方根即是6的平方根=正負根號6。

6樓:匿名使用者

如果x平方=y,那麼我們就可以說x=更號y一個數(非負數)的平方根有兩個,一正一負,算數平方根就是指這個數的正平方根根號36=6,是算36的算數平方根(正平方根),但36的平方根則是正負6

7樓:匿名使用者

次根式的概念及意義!

為什麼一個數字需要開根號?開根號的意義是什麼?

8樓:匿名使用者

平方的逆運算

根號是一個數學符號。根號是用來表示對一個數或一個代數式進行開方運算的符號。若aⁿ=b,那麼a是b開n次方的n次方根或a是b的1/n次方。

開n次方手寫體和印刷體用√ ̄表示,被開方的數或代數式寫在符號左方v形部分的右邊和符號上方一橫部分的下方共同包圍的區域中,而且不能出界。

什麼是根號,它有什麼用根號的意義是什麼?

舉例 4如果沒有根號 就只是等於4 假如加根號就是等於正負2 簡單的說一個數開了根號就是等於把他開方 2的平方 4 那把4開根號就是 2 3的平方 9 把9開根號就是 3 簡單說就是 反著平方 比如2的平方是4 那麼根號4就是2 加 就是這個數的算術平方根 加 就是這個數的平方根 加 就是這個數的負...

根號0有意義嗎,根號0有意義麼

有意義,0 0 在實數範圍內 1 偶次根號下不能為負數,其運算結果也不為負。2 奇次根號下可以為負數。不限於實數,即考慮虛數時,偶次根號下可以為負數,利用 i 1 即可。擴充套件資料根號的由來 古時候,埃及人用記號 表示平方根。印度人在開平方時,在被開方數的前面寫上ka。阿拉伯人用 表示 1840年...

根號是什麼意思根號是什麼意思?

根號是用來表示一個數的根式的符號,若a n b,那麼a n b,其中 就是根號.簡單地說,就是平方的逆運算得出的結果 原數帶根號.例如 4 2.因為2的平方 4,所以 4 2.我的理解根號是用來表示一個數的根式的符號 4 2.因為2的平方 4 簡單地說,若a n b,其中 就是根號,那麼a n b。...