請問一下,大學的微積分與高數有什麼區別嗎對考研的影響大嗎

2021-04-17 11:56:25 字數 5691 閱讀 6918

1樓:蛙家居

內容沒有區別。

1、大學的高數學習的內容全部是微分和積分的知識。

2、高等數學是回將簡答單的微積分學,概率論與數理統計,以及深入的代數學,幾何學,以及他們之間交叉所形成的一門基礎學科.

3、微積分是高等數學中研究函式的微分、積分以及有關概念和應用的數學分支,它是數學的一個基礎學科.

2樓:張鑫楠

內容沒有區bai別。

大學的高數學du習的zhi內容全部是微分和積分dao的知識。

而對於專考研屬的影響來說,考研中數學的主要科目就是高數了,所以是非常重要。

大學中一般還要學習的科目還要線性代數、概率論。這些考研也是要考的,只是沒有高數所佔的內容比例大。

3樓:匿名使用者

微積分比高來數簡單很多,自當時我學的是數學分析。

4樓:匿名使用者

高數學的東復西多些,積制分、微分,空間幾何,二重積分,bai三重積分du,曲面積分,級數,zhi微分方程求解等;

你這個dao專業考研,好像是考數學三,也就是高數裡面的一大部分內容,所以考研的話,你還是選高數去上

本人高數都是自學過來的,聽老師講,基本幫助不大,自己先弄懂書本的,然後做習題

考研數學一成績 133/ 總分150

5樓:匿名使用者

高數裡就會學到微積分,你們學校可能將微積分單獨分科學了。

用心學專,不會覺得很難

屬。我高中文科學生,大學裡高數也能拿個**十分。大學學習態度端正很重要。最好不要逃課,按時交老師的作業等。一般大學老師都不會為難態度端正的學生的。

6樓:賈京京

現在我學的是微積分,但考研的話,就可能要自學一下高數了,因為考研的題比微積分要難,涉及到高數方面的知識是微積分沒有學到過的。我也就瞭解這麼多,你再問問其他人吧。

7樓:張繫系

高等數學分上下冊主bai

要還是微積分以及du微積zhi分的應用還有其他的一些dao知識別擔版心 基本上還是圍繞微積分權轉的 考研的時候你們文科考得應該是數二很簡單的 最後告訴你 微積分很重要**研究都用到 經濟學就不用說了

請問微積分和高等數學是一回事嗎?

8樓:匿名使用者

不是。高等數學包括微積分。

高等數學是由微積分學

,較深入的代數學、幾何學以及它們之間的交叉內容所形成的一門基礎學科。主要內容包括:極限、微積分、空間解析幾何與線性代數、級數、常微分方程。

理工科的不同專業,文史科的不同專業,深淺程度又各不相同。研究變數的是高等數學,可高等數學並不只研究變數。

文史科各類專業的學生,學的數學稍微淺一些,課本常稱「微積分」。

在中國理工科各類專業的學生,學的數學較難,課本常稱「高等數學」。

微積分(calculus)是高等數學中研究函式的微分(differentiation)、積分(integration)以及有關概念和應用的數學分支。

它是數學的一個基礎學科。內容主要包括極限、微分學、積分學及其應用。

微分學包括求導數的運算,是一套關於變化率的理論。它使得函式、速度、加速度和曲線的斜率等均可用一套通用的符號進行討論。

積分學,包括求積分的運算,為定義和計算面積、體積等提供一套通用的方法 。

9樓:app推廣

分析如下:

微積分和高等數學

不是一回事。準確的說,高等數學包括微積分。就實際而言,微積分要比高等數學難一點。

微積分顧名思義包括兩大體系,即微分學和積分學。在大學課程裡,微分學的主要板塊包括極限、連續、導數、微分四大塊,包括不定積分、定積分這兩大塊。其中不定積分說白了就是求原函式的。

而定積分又可分為一元函式的定積分,多元函式的定積分和廣義積分、含參量積分。

那麼什麼是高等數學呢?上面的微積分加上了空間向量、空間曲面、空間曲線這部分知識,然後再加上數項級數和函式項級數就是我們所學的高等數學了。因為積分學那裡面我們要學習曲線積分和曲面積分,因此必須要加上簡單的空間向量及空間曲線、曲面知識。

而級數這部分知識(包括數項級數和函式項級數)是研究函式性質的另一種手段,因此也加在了高等數學裡面。以上基本就是高等數學的體系了。

拓展資料

微積分(calculus)是高等數學中研究函式的微分(differentiation)、積分(integration)以及有關概念和應用的數學分支。它是數學的一個基礎學科。內容主要包括極限、微分學、積分學及其應用。

微分學包括求導數的運算,是一套關於變化率的理論。它使得函式、速度、加速度和曲線的斜率等均可用一套通用的符號進行討論。積分學,包括求積分的運算,為定義和計算面積、體積等提供一套通用的方法。

10樓:愛青鳥

微積分和高等數學不是一回事。準確的說,高等數學包括微積分。就實際而言,微積分要比高等數學難一點。

微積分顧名思義包括兩大體系,即微分學和積分學。在大學課程裡,微分學的主要板塊包括極限、連續、導數、微分四大塊,包括不定積分、定積分這兩大塊。其中不定積分說白了就是求原函式的。

而定積分又可分為一元函式的定積分,多元函式的定積分和廣義積分、含參量積分。

那麼什麼是高等數學呢?上面的微積分加上了空間向量、空間曲面、空間曲線這部分知識,然後再加上數項級數和函式項級數就是我們所學的高等數學了。因為積分學那裡面我們要學習曲線積分和曲面積分,因此必須要加上簡單的空間向量及空間曲線、曲面知識。

而級數這部分知識(包括數項級數和函式項級數)是研究函式性質的另一種手段,因此也加在了高等數學裡面。以上基本就是高等數學的體系了。

11樓:王珂

不是一回事。高等數學包括微積分。

通常認為,高等數學是由微積分學,較深入的代數學、幾何學以及它們之間的交叉內容所形成的一門基礎學科。主要內容包括:極限、微積分、空間解析幾何與線性代數、級數、常微分方程。

在中國理工科各類專業的學生,學的數學較難,課本常稱「高等數學」;文史科各類專業的學生,學的數學稍微淺一些,課本常稱「微積分」。

理工科的不同專業,文史科的不同專業,深淺程度又各不相同。研究變數的是高等數學,可高等數學並不只研究變數。至於與「高等數學」相伴的課程通常有:

線性代數(數學專業學高等代數),概率論與數理統計。

12樓:hi漫海

數學裡麵包括微積分,但只是有微積分的一

部分,高等數學裡面還有傅立葉級數,泰勒級數等其它一些內容。

積分的課程主要是學習微積分,相對而言,比高等數學要難,一般裡面還包括複變函式,積分變換等,但這兩項一般在高等數學裡面只是簡單介紹。

13樓:風炎之鷹

算了吧,回憶21是學外語的她懂什麼高等數學,微積分是高等數學的一部分,但不可否認是相當大的一部分。教材可以用六版的,習題建議用陳文燈的。

14樓:匿名使用者

通常說的高等數學包括微積分、微分方程、級數等,但是有些專業或院校用的教材除了數學物理方法外全都包括在裡面,你選同濟的教材很好,相比之下微積分好學點分數比例還高就選微積分吧

15樓:閒人一個問

不是,微分是微分,積分是積分,兩者不同。微積分只是高等數學的一部分。

考研高等數學一與二有什麼區別

16樓:所示無恆

1、物件不同:數學一主要對應理工科;數學二主要對應農學;

2、考試科目不同:

數學一包括:高等數學、線性代數、概率論與數理統計,考得比較全面,而且題目相對偏難。

數學二包括:高等數學、線性代數。

3、適用專業不同:

數學一是對數學要求較高的理工類專業的,適用專業:工學門類、管理學門類中管理科學與工程一級學科中所有的二級學科等專業。

數學二是對於數學要求要低一些的農、林、地、礦、油等等專業的,適用專業:工學門類的紡織科學與工程、輕工技術與工程、農業工程、林業工程、食品科學與工程等一級學科中所有的二級學科;工學門類的材料科學與工程、化學工程與技術、地質資源與地質工程、礦業工程、石油與天然氣工程、環境科學與工程等一級學科中對數學要求較低的二級學科等專業。

4、各自領域不同:

數學二不考概率,數學一的內容最多,也最難,難易程度是數學

一、數學二的順序來的。

擴充套件資料

考研解答技巧

考研數學解答題主要考查綜合運用知識的能力、邏輯推理能力、空間想象能力以及分析、解決實際問題的能力,包括計算題、證明題及應用題等,綜合性較強,但也有部分題目用初等解法就可作答。跨考教育數學教研室***表示,解答題解題思路靈活多樣,答案有時並不唯一,這就要求同學們不僅會做題,更要能摸清命題人的考查意圖,選擇最適合的方法進行解答。

結合教材和前一年的大綱,先吃透基本概念、基本方法和基本定理。數學是一門邏輯性極強的演繹科學,只有對基本概念深入理解,對基本定理和公式牢牢記住,才能找到解題的突破口和切入點。對近幾年數學答卷的分析表明,考生失分的一個重要原因就是對基本概念、定理記不全、記不牢,理解不準確,基本解題方法掌握不好。

17樓:匿名使用者

考研數學

區別主要存在以下兩個方面:

【試卷內容的區別】

1.數學一

高等數學:同濟六版高等數學中除了第七章微分方程考帶*號的尤拉方程,伯努利方程外,其餘帶*號的都不考;所有「近似」的問題都不考;第四章不定積分不考積分表的使用;第九章第五節不考方程組的情形;第十二章第五節不考尤拉公式;

線性代數:數學一用的教材是同濟五版線性代數1-5章:行列式、矩陣及其運算、矩陣的初等變換及其方程組、向量組的線性相關性、相似矩陣及二次型。

其中向量組的線性相關性中數一考向量空間,線性方程組跟空間解析幾何結合數一也要考;

概率與數理統計:1、概率論的基本概念2、隨機變數及其分佈3、多維隨機變數及其分佈4、隨機變數的數字特徵5、大數定律及中心極限定理6、樣本及抽樣分佈7、引數估計8、假設檢驗

2.數學二

高等數學:同濟六版高等數學中除了第七章微分方程考帶*號的伯努利方程外,其餘帶*號的都不考;所有「近似」的問題都不考;第四章不定積分不考積分表的使用;不考第八章空間解析幾何與向量代數;第九章第五節不考方程組的情形;到第十章二重積分、重積分的應用為止,後面不考了。

線性代數:數學二用的教材是同濟五版線性代數,1-5章:行列式、矩陣及其運算、矩陣的初等變換及其方程組、向量組的線性相關性、相似矩陣及二次型。

概率與數理統計:不考。

【考試科目的區別】

1.線性代數

數學一、

二、三均考察線性代數這門學科,而且所佔比例均為22%,從歷年的考試大綱來看,數

一、二、三對線性代數部分的考察區別不是很大,唯一不同的是數一的大綱中多了向量空間部分的知識,不過通過研究近五年的考試真題,我們發現對數一獨有知識點的考察只在09、10年的試卷中出現過,其餘年份考查的均是大綱中共同要求的知識點,而且從近兩年的真題來看,數

一、數二、數三中線性代數部分的試題是一樣的,沒再出現變化的題目,那麼也就是說從以往的經驗來看,2023年的考研數學中數

一、數二、數三線性代數部分的題目也不會有太大的差別!

3. 高等數學

數學一、

二、三均考察,而且所佔比重最大,數

一、三的試卷中所佔比例為56%,數二所佔比例78%。由於考察的內容比較多,故我們只從大的方向上對數

一、二、三做簡單的區別。以同濟六版教材為例,數一考察的範圍是最廣的,基本涵蓋整個教材(除課本上標有*號的內容);數二不考察向量代數與空間解析幾何、三重積分、曲線積分、曲面積分以及無窮級數;數三不考察向量空間與解析幾何、三重積分、曲線積分、曲面積分以及所有與物理相關的應用。

微積分與高等數學有什麼區別,高數和微積分有什麼區別

二者都屬於數學範疇,高等數學範圍要大於微積分。高等數學除了微積分學的內容外,還有常微分方程,空間解析幾何等內容。望採納 高等數學是理工科非數學類的基礎課,包括極限論 微積分學 空間解析幾何與向量代數 級數論與微分方程。微積分主要是部分文史類的數學基礎課。而數學專業則比較系統化,包括數學分析 高等代數...

一道高數微積分的題,求解,一道高數題,向各路大神請求解答!!

定義域 x ln 1 x 0對任何x都成立,故函式 x 在其定義域 內都單調減。一道高數題,向各路大神請求解答!25 分子分母同除以x 即得。利用極限法則求解,具體解答如下圖 如果按證明題不是解答題的話。高數階段,複雜函式極限的存在性和極限值的求解方法只有夾逼定理吧。可以分母縮為x 2 2x 1和放...

大學的數學分析與微積分有什麼區別

數學分析包括微積分的知識,大還有其他的知識點 而微積分只包含微積分的知識,但學得更細,更深。數學分析是數學系的課程,微積分是非數學系的數學課程。數學分析更側重於證明,微積分則是相當於 高等數學 中的一部分側重於計算。總的來說,數學分析和微積分所涉及的範圍是相似的,只不過側重點不同。學好了前者有利於學...