關於複合函式的極限運演算法則的小問題

2021-03-03 20:43:04 字數 2681 閱讀 1079

1樓:匿名使用者

有個定理(也許是引理?......):

若lim(x→x0)f(x)=y0,lim(y→y0)g(y)=l,且存在正數a使得在(x0-a,x0+a)內f(x)≠y0,則lim(x→x0)g(f(x))=l (證明就版是直接把極限的定權義套進去就完了)

在這裡,f(x)=lnx,g(y)=e^y,可以看出f(x)確實滿足那個看起來很奇葩的條件「存在正數a使得在(x0-a,x0+a)內f(x)≠y0」。

嚴格的說法就是,你做到最後發現lim(x→x0)f(x)(即lnx)存在(=y0),且lim(y→y0)g(y)(即e^y)存在(=g(y0))(因為g連續嘛),所以原極限=lim(x→x0)g(f(x))=g(y0)

關於複合函式的極限運演算法則

2樓:匿名使用者

(1)你已理解,"從證明過程看是需要的".這就對了!事實上,這種需要,是為了不失一般性,為了符合"極限的回

定義"之需要,並不是g(答x)不符合這個條件就不成立了的那種需要.而極限這樣定義,卻是為了研究那些趨於x0而不達到x0之問題,至於達到x0的情況,是比達不到的情況更簡單的.

(2)具體說,你不可能舉出反例.因為當g(x)等於u0時,結論必真.

(3)這樣理解:是為了符合極限定義中"(x-x0)的絕對值》0"之要求,當不符合》0時,極限仍成立,用"連續"的情況來理解:見同濟第五版《高等數學》p61的前7行,再參看p66定理3定理4,應該可以想明白了.

3樓:欲乘風歸去者

我想這個問bai

題也想了很久,du我的看法是這個zhi條件是這個定理的必dao要條件專,沒有這個條件屬這個定理是不成立的,就比如上面那個舉出來的分段函式的反例。這個定理其實關心的是在u0附近的複合函式的取值,至於g(x)=u0時,複合函式的取值則不是這個定理所關心的,因為f(x)可以在這一點連續,不連續,甚至還可以沒有意義,這就導致了複合函式在該點需要另外分析。

4樓:匿名使用者

你可復以這樣想,如果補充一制條性質:對任意的ε大於0,存在δ大於0,當x-xo的絕對值小於δ時,f(x)-a的覺對值小於ε時,f(x)的極限是a。這樣證明你那個問題時就可以去掉g(x)不等於uo這個條件了。

5樓:匿名使用者

極限是種趨勢 與這點的值無關

極限不用管這一點x0 也管不到這一點

lz多看看極限的定義哦

6樓:匿名使用者

你要是學高數復

的 這個基本不制用太關注 數學分析研究bai的深入一些

去心du鄰域的限定使得比如zhi一些點,在dao該點函式無意義,但是該點鄰域內有意義,這樣的該點的極限仍然存在我記不清了,大概是這樣的 ,你可以查閱一些數學分析的書,比如 高教的 數學分析教程

7樓:你好蒼井空

這個是必須的,理論上的東西就不多說,你可以看證明過程。

8樓:才煊風若菱

|令u=g(x),又u0=lim(x→x0)g(x)

對於a=im(u→u0)f(u)

任意給定ε>0,都存在δ>0,使得當0<|回u-u0|<δ--1時,|f(u)-a]|<ε

對於u0=lim(x→x0)g(x)

即對於上面給定的答δ,存在ξ>0,使得當0<|x-x0|<ξ時,|g(x)-u0|<δ--2

取ρ=min,當0<|x-x0|<ρ時,0<|g(x)-u0|<ρ成立

【即12兩個不等式同時成立】

即對於極限lim(u→u0)f(u)=a而言

任意給定ε,當0<|u-u0|<ρ,都有|f[g(x)]-a|=|f(u)-a|<ε,從而極限成立

複合函式的極限運演算法則

9樓:是你找到了我

設limf(x),bailimg(x)存在,du且令

則有以下運算zhi

法則:dao

擴充套件資料:

一、兩個重內要極限:

(其中e=2.7182818......,是一個容無理數,也就是自然對數的底數)

二、極限的性質

1、唯一性:若數列的極限存在,則極限值是唯一的,且它的任何子列的極限與原數列的相等。

2、有界性:如果一個數列』收斂『(有極限),那麼這個數列一定有界。但是,如果一個數列有界,這個數列未必收斂。例如數列 :「1,-1,1,-1,......,(-1)n+1」.

10樓:匿名使用者

書上的邏輯是正

copy確的。

注意證明中第一行的【要證...】★

以及第五行的【由於...】☆

其中★是要【證極限】

其中☆是在【用極限】

★是要對任一任意小的正數證明極限定義成立。

☆是已知對【任一個】任意小的正數都有極限定義成立,從而對【這一個g】也有極限定義成立。

退一步說,在情況☆,既然對任意小的都行,

那麼,即使g不是那麼小也行。

或者,如果g不是那麼小,想取一個足夠小的d比g小,證明也行得通。

都行,不影響本質。

複合函式的極限運演算法則定理,為什麼其中要有這個條件?

11樓:月光下的

劃線部分闡述了極限關於趨向的一個基本的規避。永遠逼近但是永遠取不到。

關於複合函式的極限運演算法則,複合函式的極限運演算法則

1 你已理解,從證明過程看是需要的 這就對了 事實上,這種需要,是為了不失一般性,為了符合 極限的回 定義 之需要,並不是g 答x 不符合這個條件就不成立了的那種需要.而極限這樣定義,卻是為了研究那些趨於x0而不達到x0之問題,至於達到x0的情況,是比達不到的情況更簡單的.2 具體說,你不可能舉出反...

關於多元函式,偏導數的一些疑問。(涉及複合函式) 高數

理解為,由x,y,z的3元方程f x az,y bz 0確定了z是x,y的二元函式 z z x,y 這屬於隱函式的情況 而,方程f x az,y bz 0的左邊的函式f x az,y bz 是複合函式的形式 這屬於複合函式的情況 所以,解這個題要用隱函式的求導方法,即 方程兩邊關於x求導 在求的過程...

複合函式極限,複合函式的極限運演算法則

設limf x limg x 存在,且令 則有以下運演算法則 如果空心鄰域內有其他點x1,g x1 u0,則g u0,x不一定趨近於x0,可能趨近於x1去了,後面的做法就沒有依據了。我給你仔細地看了一下,又仔細地想了一下,這個限制是為了保證 u u0 0,而不會出現 u u0 0的情況,但是其實,只...