求極限lime1x0x0極限怎麼算來的

2021-03-07 07:29:42 字數 2720 閱讀 8314

1樓:開森阿七

^由於f(x) = e^(1/x)-1在x=1處連續,故有連續函式定義知道:f(x)在x=1處的極限就是f(1),計算可得f(x) = 0。

如果f(x) = e^(1/(1-x)),那麼x-->1時,左極限為0,右極限為正無窮。

其實當x趨於1時,1/(1-x)是趨於無窮的(x1時趨於正無窮),從而e^(1/(1-x))有兩種極限。

拓展資料:

高等數學求極限,求lim[1/e*(1+x)^(1/x)]^(1/x) 【x趨於0】

如題:求lim[(1/e)*(1+x)^(1/x)]^(1/x) 【x趨於0】

解答:lim[(1/e)*(1+x)^(1/x)]^(1/x)

=lim[1+((1+x)^(1/x)-e)/e]^[[e/((1+x)^(1/x)-e)]*[((1+x)^(1/x)-e)/ex ]]

=lime^((1+x)^(1/x)-e)/ex

lim((1+x)^(1/x)-e)/ex

=lim(x-(1+x)ln(1+x))/x^2

=-1/2

所以lim[(1/e)*(1+x)^(1/x)]^(1/x) 【x趨於0】=e^(-1/2)。

2樓:匿名使用者

x→0-:1/x→-∞

e^(1/x)→0(y=e^(1/x)無限接近於x軸的負半軸)

3樓:

回答你的追問,按照樓上的思路就可以了,因為(1/(x-1))從1+方向趨於1時,(1/(x-1))趨於正無窮,從1-方向趨於1時(1/(x-1))趨於負無窮,在放到e上,當(t→∞) (t= (1/(x-1)) ) e∧(t)趨於∞,而當(t→— -∞ )時,e∧(t)趨於0

計算極限lim(n→0)(e^1/x)/(e^1/x-1)

4樓:匿名使用者

^f(0+)

=lim(x->0+) [e^zhi(1/x) +1 ]/[e^(1/x) -1 ]

=lim(x->0+) [1+ 1/e^(1/x) ]/[1-1/e^(1/x) ]

=(1+0)/(1-0)

=1f(0-)

=lim(x->0-) [e^(1/x) +1 ]/[e^(1/x) -1 ]

=lim(x->0-) [1/e^(-1/x) +1 ]/[1/e^(-1/x) -1 ]

=(0+1)/(0-1)

=-1≠f(0-)

=>lim(x->0) [e^(1/x) +1 ]/[e^(1/x) -1 ] 不存在dao

lim{(e^1/x)-1}/{(e^1/x)+1}的左右極限怎麼求

5樓:無法____理解

左極限為-1.右極限為1.

解答過程:

lim/{(e^1/x)+1,x->0

原式等於1-2/( e^(1/x)+1).

當x趨於0+時,e^(1/x)趨於無窮,

原式極限為1,即右極限為1.

當x趨於0-時,e^(1/x)趨於0,

原式極限為-1;即左極限為-1.

以上思想用了用洛必達法則。

洛必達法則是在一定條件下通過分子分母分別求導再求極限來確定未定式值的方法。這種方法主要是在一定條件下通過分子分母分別求導再求極限來確定未定式的值.在運用洛必達法則之前,首先要完成兩項任務:一是分子分母的極限是否都等於零(或者無窮大);二是分子分母在限定的區域內是否分別可導;如果這兩個條件都滿足,接著求導並判斷求導之後的極限是否存在:

如果存在,直接得到答案;如果不存在,則說明此種未定式不可用洛必達法則來解決;如果不確定,即結果仍然為未定式,再在驗證的基礎上繼續使用洛必達法則。

拓展資料「極限」是數學中的分支——微積分的基礎概念,廣義的「極限」是指「無限靠近而永遠不能到達」的意思。數學中的「極限」指:某一個函式中的某一個變數,此變數在變大(或者變小)的永遠變化的過程中,逐漸向某一個確定的數值a不斷地逼近而「永遠不能夠重合到a」(「永遠不能夠等於a,但是取等於a『已經足夠取得高精度計算結果)的過程中,此變數的變化,被人為規定為「永遠靠近而不停止」、其有一個「不斷地極為靠近a點的趨勢」。

極限是一種「變化狀態」的描述。此變數永遠趨近的值a叫做「極限值」(當然也可以用其他符號表示)。

6樓:巴山蜀水

解:本題中的左右極限,是指當變數x從"<0"、">0"的方向趨於0時的極限。故,左極限是當→0-時,函式的極限。

∵x→0-時,e^(1/x)→e^(-∞)→0,∴lim(x→0-)=-1/1=-1。同理,可求其右極限。∵x→0+時,e^(1/x)→e^(∞)→∞,∴lim(x→0+)=1/1=1。

供參考。

7樓:風箏lk人生

左極限:x<0,x無限接近0,分子的極限是-1,分母是1,所以左極限是-1

右極限:x>0 , x無限接近0,(e^1/x)極限是無窮大,原式=1-2/

所以右極限是1。

8樓:慶呆呆

0點附近:1/x的左右極限不同,從而影響了e^1/x的左右極限不同。1/x的左極限是負無窮,1/x的右極限是正無窮。則e^1/x的左極限是0,右極限是正無窮。

9樓:學員創號

x趨向0-時,1/x趨向於負無窮,e^1/x趨向於0,0-1/0+1,等於-1;x趨向0+時,1/x趨向正無窮,e^1/x趨向正無窮,此時在正無窮面前+-1無影響,直接忽略,所以等於1

求極限x趨向0lim1x2xe

先明確是何種bai 未定式 以下說明 du及步驟同趨向zhi 1 x 2 x 1 x x 2 e 2上述說明了此題dao是0 0型。冪指函式求回導需要 e起來 答,怎麼做如下 1 x 2 x e 2 x ln 1 x 1使用羅比達法則即可 高數求極限的問題,x趨向於0時,1 x 2 x e 2 2的...

用泰勒公式求極限。1limx0x3x2x2e1xx

1 limit x 3 x 2 x 2 exp 1 x x 6 1 1 2 x,0 極限 無窮大 2 lim x 0 1 x 1 sinx 0 求下列極限 lim x x 3 x 2 x 2 e 1 x x 6 1 7 6 lim x x 636f707962616964757a686964616f...

2x1x當x趨近於0時的極限怎麼求

羅必塔 製法則 lim x 0 2 x 1 x lim x 0 ln2 2 x 1 ln2 等價無窮小bai量 令 du2 x 1 t 則 x ln 1 t ln2 x 0 t 0 ln 1 t t lim x 0 2 x 1 x lim x 0 t ln 1 t ln2 lim x 0 ln2 t...