幾何有哪幾種圖形 每種圖形的特性是什麼

2021-03-11 14:50:04 字數 6551 閱讀 3669

1樓:匿名使用者

從大類上分bai為平面幾何du、立體幾何、以及zhi解析幾何。

平面幾何:主要dao

研究平面即二內維的圖形,常見容的代表圖形為三角形、矩形(正方形長方形)、平行四邊形(例如菱形、矩形)、梯形、五邊形、其他多邊形、圓、橢圓、半圓、不規則形狀等等;

他們主要研究平行、垂直、面積、邊長、是否正則(即正三角形、正方形等)、相等、相似等性質;

立體幾何:主要研究長方體、空間四邊形、平行六面體、橢球體、球體、不規則體等等,只要我們所處的空間裡,所有頂點不在同一平面上的東西都可以成為體,都可以是立體幾何研究的物件。

和平面幾何相似,主要研究平行、垂直、面積、邊長、是否正則(即正三角形、正方形等)、相等、相似等性質;

解析幾何:這個分支和數學計算聯絡比較大,通過對圖形特徵特別是角度、斜率等的計算和求解以及向三維以上的空間推廣的學科,往往大學才會涉及到。

如果問某種圖形特徵,你要說出具體哪種圖形,一般的就不外乎:垂直、等腰、平行、等邊這些性質。

2樓:愛上新堂君

點、線、面、體這些

來可幫助人自們有效

的刻畫錯綜複雜的世界,它們都稱為幾何圖形(geometric figure)

幾何圖形一般分為立體圖形(solid figure)和平面圖形(plane figure)。

1.所有點不在同一平面上的圖形叫立體圖形。

2.如果構成圖形的所有點都在同一平面內,這個圖形叫做平面圖形

幾何有哪幾種圖形?每種圖形的特性是什麼

3樓:是振梅鄧嫻

幾何圖形一般分為立體圖形\和平面圖形

幾何圖形:

a-----邊長

c=4a

s=a2

長方形a和b-----邊長

c=2(a

b)s=ab

三角形a,b,c-----三邊長

h-----a邊上的高

s-----周長的一半

a,b,c-----內角

其中s=(a

bc)/2

s=ah/2

=ab/2·

sinc

=[s(s-a)(s-b)(s-c)]1/2=a2sin

bsinc/(2sina)

四邊形d,d-----對角線長

α-----對角線夾角

s=dd/2·sinα

平行四邊形

a,b-----邊長

h-----a邊的高

α-----兩邊夾角

s=ah

=absinα

菱形a-----邊長

α-----夾角

d-----長對角線長

d-----短對角線長

s=dd/2

=a2sinα

梯形a和b-----上、下底長

h-----高

m-----中位線長

s=(a

b)h/2

=mh圓

r-----半徑

d-----直徑

c=πd=2πr

s=πr2

=πd2/4

扇形r-----扇形半徑

a-----圓心角度數

c=2r+2πr×(a/360)

s=πr2×(a/360)

弓形l-----弧長

b-----弦長

h-----矢高

r-----半徑

α-----圓心角的度數

s=r2/2·(πα/180-sinα)

=r2arccos[(r-h)/r]

-(r-h)(2rh-h2)1/2

=παr2/360

-b/2·[r2-(b/2)2]1/2

=r(l-b)/2

bh/2

≈2bh/3

圓環r-----外圓半徑

r-----內圓半徑

d-----外圓直徑

d-----內圓直徑

s=π(r2-r2)

=π(d2-d2)/4

4樓:繁楚餘甲

點、線、面、體這些可幫助人們有效的刻畫錯綜複雜的世界,它們都稱為專幾何圖形(geometric

figure)

幾何圖形一屬般分為立體圖形(solid

figure)和平面圖形(plane

figure)。

1.所有點不在同一平面上的圖形叫立體圖形。

2.如果構成圖形的所有點都在同一平面內,這個圖形叫做平面圖形

基本幾何圖形有五種,分別是什麼

5樓:匿名使用者

點、直線、射線、線段、角

這是初中幾何中的概念

一定要熟記

6樓:匿名使用者

點,直線,線段,射線,角

數學幾何中有哪幾種基本圖形

7樓:商弦角羽

初中還是高中呢?初中學習了矩形,圓形,三角形,高中我記得增加了橢圓形吧。

幾何包括幾種型別?

8樓:竟然沒名字用了

1、對幾何體進行分類,可根據幾何體的特徵按(柱體),(錐體),(球體)劃分;也可按組成幾何體的面的(曲 )或(平)來劃分;還可組成幾何體的面的(數量 )來劃分。

2、立體幾何圖形,第一類:柱體;包括:圓柱和稜柱,稜柱又可分為直稜柱和斜稜柱,稜柱體按底面邊數的多少又可分為三稜柱、四稜柱、n稜柱;稜柱體積統一等於底面面積乘以高,即v=sh,第二類:

錐體;包括:圓錐體和稜錐體,稜錐分為三稜錐、四稜錐以及n稜錐;稜錐體積統一為v=sh/3,第三類:旋轉體:

包括:圓柱;圓臺;圓錐;球;球冠;弓環;圓環;堤環;扇環;棗核形。

3、平面幾何圖形:

1)圓形:包括正圓,橢圓,多焦點圓--卵圓。

2)多邊形:三角形(分為一般三角形,直角三角形,等腰三角形,等邊三角形)、四邊形(分為不規則四邊形,梯形,平行四邊形,平行四邊形又分:矩形,菱形,正方形)、五邊形、六……

3)弓形(由直線和圓弧構成的圖形,包括優弧弓,劣弧弓,拋物線弓等)。

4)多弧形(包括月牙形,穀粒形,太極形葫蘆形等)

幾何圖形有哪些

9樓:曉龍修理

幾何圖形分為立體圖形和平面圖形。

立體幾何圖形可以分為:柱體、錐體、旋轉體、截面體。

平面幾何圖形可分為:圓形、多邊形、弓形、多弧形。

各部分不在同一平面內的圖形叫做立體圖形;各部分都在同一平面內的圖形叫做平面圖形。

幾何圖形的應用:1.幾何圖形的應用非常廣泛,無論在設計、繪畫創作、數學研究中都需要藉助幾何圖形進行。

2.數學定義、定理等用數學語言敘述起來很抽象,記住定理有一定難度,因此幫助學生記住定義定理是教學中一個重要環節。若在教學中恰當地藉助幾何圖形,數形結合,使學生對直觀圖形加深理解以掌握其定理。

10樓:縱橫豎屏

幾何圖形分為立體幾何圖形,平面幾何圖形。

立體幾何圖形可以分為以下幾類:(1)柱體:包括圓柱和稜柱。

稜柱又可分為直稜柱和斜稜柱,按底面邊數的多少又可分為三稜柱、四稜柱、n稜柱;稜柱體積都等於底面面積乘以高,即v=sh;

(4)截面體:包括稜臺、圓臺、斜截圓柱、斜截稜柱、斜截圓錐、球冠、球缺等。其表面積和體積一般都是根據圖形加減解答。

平面幾何圖形可分為以下幾類:(1)圓形:包括正圓,橢圓,多焦點圓——卵圓。

(2)多邊形:三角形、四邊形、五邊形等。

(3)弓形:優弧弓、劣弧弓、拋物線弓等。

(4)多弧形:月牙形、穀粒形、太極形、葫蘆形等。

11樓:薄瓔脫雅嫻

平面的有:正方形  矩形  圓 三角形 菱形 梯形 平行四邊形 等

立體"  正方體 圓柱 正四面體 圓錐體

12樓:公羊學岺碧胭

幾何圖形包括平面圖形與立體圖形。

點、線段、射線、直線、三角形、四邊形等為平面圖形;長方體、圓球、圓錐等為立體圖形。

13樓:匿名使用者

根據粗略的統計和分類,幾何商標圖形大致有以下幾類:

(1)單形.如圖9,10,以一個單獨幾何圖形為整個商標.這種例子較少見.且多為基本圖形的變形.

(2)分形.將一個基本幾何圖形分成幾部分如圖3(等邊三角形分為三部分)圖5(五邊形分出一個三角形)、圖12(圓分成上下兩部分).

(3)相似(同)組形.用幾個相似或相同的基本幾何圖形組合而成,如圖1(由三個等腰梯形組成)圖2(由三個等邊菱形組成)、圖11(由五個穿孔的小圓組成).

(4)變形.由一個基本幾何圖變化而來.如圖8(由菱形變化所得)、圖9(平行四邊形變化所得)、圖10(矩形變化所得).

(5)組形.由兩個或多個不同的基本幾何圖形組合而成.這種情況較為普遍.如圖4(由一個圓與一正方形疊加而成)、圖7(由一個等腰直角三角形與一矩形拼接而成).

(6)擬形.用幾何圖形或其組形來模擬物體、文字,達到傳神、表意的效果.這種例子也不少.如圖5(兩個v的疊加)圖13(擬一個「人」字,紅色小圓擬一藥丸)、圖14(擬太陽出山)、圖17(擬字母「m」).

(7)混合形.將多種手法混合使用.如圖6,可視為由一立方體及其陰影組成,而且從四個方向來看,效果一樣.筆者作過這樣的試驗:在不同年齡段的學生(從初中生和大學生)中,要求他們將自己從街上或電視上看到的商標,說出幾個,並畫出

一、二個來.結果,說出來的,幾乎都是規則幾何圖形組成的商標(以下簡稱幾何圖形商標)——如「北大方正」、「三菱」「徐工」等.

這給我們一個啟示:幾何圖形商標,在多種型別的商標中,具有顯著的廣告宣傳優勢,值得數學工作者,特別是中學數學教師的關注.中學數學裡的基本幾何圖形——三角形、矩形、正方形、梯形、菱形、圓、橢圓等進入商標設計,並扮演越來越重要的角色,為中學幾何知識聯絡實際、為市場經濟服務,開闢了一條有效途徑,我們不妨結合數學教學做一點嘗試.

1 幾何圖形商標的特點和優點

1 從中可以看出幾何圖形商標有以下明顯特點:

(1)構圖簡捷明快,立體感強.這是由於基本幾何圖形形體規則所決定的.因此它給人們的整體印象鮮明而突出.

(2)彼此差異顯著,易於人們識別和辨認.因為不同種類的幾何圖形的本質屬性不同,決定了人們的視覺效果有很大不同.即使同為直線圖形,由基本幾何圖形的組合不同、色彩不同,也會顯示出較大差別.因而不易被混淆.

(3)規範性強,易於製作,幾何圖形、特別是基本幾何圖形的作圖,都有既定標準和作法,而且只用圓規和直尺這兩種工具就可以完成.這給幾何圖形商標的製作,帶來了極大方便.一旦製圖規範確定下來,便可整齊劃一地製作出各種大小尺寸的幾何圖形商標出來.

1.2 由此給幾何商標帶來了良好的廣告效應(這正是商標的主要價值所在):

(1)力度和美感.直線形,粗實而富有力度;曲線形,優美而富有美感.對稱形,表現為勻稱美;不對稱形,表現出和諧美.黑白圖形,莊嚴而有力;著色圖形,明麗而悅目.

(2)易於引發聯想和想象.幾何商標中粗拙的(如圖1,2,3),使人聯想到產品的質量堅實可靠;優雅的使人聯想到產品美妙、靈巧.有的與商品或廠家名稱結合得如此緊密,一看便知其名稱(如圖4——「紅方」.有的富有變化發人思索,有的構思巧妙,耐人尋味.

1.3 正因為如此,所以國內外不少著名商標,都採用幾何圖形.中美「史克」,美菱電器,北大方正電腦,聯想集團等等

2 幾何圖形商標的種類

3 幾何圖形商標的設計

3.1 幾何商標的創意,常可採用以下途徑:

(1)以形象物.選擇或構建適當的幾何圖形,來象徵產品的名稱、形體、屬性,或生產廠名稱、廠所在地風光等,以達到形——物合一的效果.如圖2、圖4、圖6象徵廠(集團)名稱.

(2)以形喻意.構建幾何圖形,以表達產品的效能、質量,或廠家的雄心、願望等,從而取得廣告宣傳的效果.如圖1,以粗實的直線圖形隱喻工程機械的質量可靠;圖4,喻意大腦思維與外部世界的聯絡,從而達到「聯想」的意味;圖10,喻意四方都吃該廠藥品,廠家有向八方發展的雄心.圖13,喻「人吃藥」.

(3)以形寓美,以巧妙的構思、優美的著色,使美寓於幾何商標之中,使人們產生美的感受,從而達到吸引顧客的目的.巧妙的組合、豔麗的色彩,使消費者產生賞心悅目的美好感受,從而對其產品產生認同感.

3.2 設計時應注意的問題

(1)處理好圓與方、曲與直、巧與拙、對稱與不對稱、動與靜等辯證關係.

由於幾何圖形總與現實生活中的具體事物相聯絡,使它們也帶上了情感色彩.例如,圓、曲線圖形,優美而靈活;方、直線圖形,則堅實而穩重.對稱圖形有勻稱美,不對稱圖形則有奇異美.我們應在商標設計,充分利用這點,處理好這些辯證關係.

(2)要給出明確的製圖規範,對於非基本幾何圖形或組合幾何圖形,尤須如此

這種製圖規範,最好用數學語言給出作法,或給出解析表示式(如圖中線段比例、關節點座標、曲線函式關係等).

(3)幾何商標圖形,儘可能不用或少用文字(中文、英文或拼音縮寫字母);即使要用,也須形象化、圖案化.

總之,把幾何圖形用於商標設計,可以給中學數學教學增添生動的內容,提高學生學習幾何(初中數學難點之一)的興趣,培養他們的創造才能.

參考文獻

1 葉錦文.幾何圖形構成的商標的收集與創作.數學教學,1994,(4).

2 嚴士健.面向21世紀的中國數學教育改革.數學教育學報,1996(1).

平面設計的圖形處理軟體有哪幾種?具體的作用是什麼

平面設計的軟體比較 多,但是現在比較常用的是photoshop,coreldraw,freehand,illustrator,pagemaker,photoshop主要是做影象處理,以及內文字較少的廣容告畫面 coreldraw主要是用於排版,是一個向量軟體,文字排版功能比photoshop強大,可...

城市道路系統基本圖形模式有哪幾種 各自的主要優缺點是什麼

1 單幅路 一塊板 優點 佔地少,投資省,車道利用率高。缺點 車輛混行,不安全。適用 一般道路紅線較窄,機動車和非機動車 不多的次幹道 支路。用地不足拆遷困難的舊城改建的城市道路。2 雙幅路 兩塊板 優點 投資省,機動車分向行駛,安全程度提高。缺點 一側仍舊屬於混行,機動車和非機動車行駛,互相影響。...

建築石材有哪些常用建築石材有哪幾種每種石材的特性和用途是什麼

建築石材有 建築石材 指主要用建築工程砌築或裝飾的天然石材。分類一 毛石 分為亂毛石和平毛石 二 料石 分為毛料石 粗料石 半細料石 細料石 三 飾面石材。建築石材是指主要用建築工程砌築或裝飾的天然石材。建築石材 的定義,可由 s11318 a1041建築用天然石材詞彙一般名詞中的解釋來了解,其解說...