函式在某點有二階導數,一階等於零,二階也等於零,能說該點不是極值嗎?謝謝

2021-04-18 00:40:21 字數 3808 閱讀 6913

1樓:匿名使用者

不能,這種情況下這個點可能是極值點,可能是拐點如y=x³,y=x^4這兩個函式在x=0處都滿足一回階導,二階答導為0,這兩個函式在x=0處,一個是拐點,另一個是極值點。

希望可以幫到你,不明白可以追問,如果解決了問題,請點下面的"選為滿意回答"按鈕。

某點二階導數小於零,一階導數等於零,那麼在該點的鄰域內,函式是凸的嗎?

2樓:匿名使用者

這是取極大值的充分條件,與凸性無關。但從 「在某點的二階導數小於零」 的條件無法得到 「在該點的某領域內二階導數小於零」 的結論,剩下的就是能否舉出反例了……

某點處函式的二階導等於零,該點對函式的意義是啥

3樓:上海皮皮龜

單由二階導為零,僅是拐點的必要條件,還不是充分條件。即二階導為零的點可能是拐點,也可能不是;但它如果是拐點,則二階導數為0(若其存在)。這就像駐點是極值的必要條件,但不是充分條件一樣。

4樓:

一般地,這個點是函式的拐點,即凹凸區間的分界點。

5樓:黃衫

拐點,函式圖形在這個地方凹凸,比如二次函式的頂點處

函式的一階、二階導數都等於零,三階導數不為零能否判斷該點是極點?或者能否用四階導數不為零判斷該點

6樓:匿名使用者

函式的一階、二階導數都等於零,三階導數不為零可以判斷該點絕對不是極點。

如果三階導數也是0

而四階導數不為0,那麼

該點肯定是極點。

且大於0是極小點;

小於0的極大點。

7樓:黃穎卿步壬

只有在導數存在的時候才能說極值點是導數為0的點。有些點導數壓根不存在,但它是極值點。比如y=|x|這個函式在x=0這一點,它比周圍任何點函式值都小,是極小值點,但這一點不可導,它沒有導數。

在高等數學中知道某一函式在某點一階導數為0,怎樣判斷在該點函式是否取到極值?這和二階導數有什麼關聯

8樓:樹林笛

f'(x0)=0

if f''(x0)>0 f(x0)極大if f''(x0)<0 f(x0)極小

其他情況不能判斷

9樓:匿名使用者

樓上說的不對,某一點一階可導,不能得到鄰域內可導,因而也不能得到二階可導,判斷極值建議從定義出發,極值要求在某一點處的函式值,大於或小於某一點鄰域內的所有值,這樣的點就是極值點,這點可以不是連續點

10樓:匿名使用者

首先看這在抄定義域中沒,襲

再算其如果左負右正,倒數值哈,比如在3時倒數為零,若小於三時,導數小於零,即在3左端函式一直下降,當同時右正,說明在三時函式的遞減已經最大化,所以三取極小,同理左正右負,二階導算函式凹凸性,沒關係

11樓:對牛頓西格瑪

如果二階導數存在且不為零就可以取到極值了,如果二階導數等於零,就不能判斷,要看三階導數,或者有辦法判斷這點兩側一階導數的正負,若變號則有極值。

一階導數等於0,二階導數等於1,表示什麼??

12樓:匿名使用者

函式在某一點處一階導數為0,二階導數為1,此時 表示函式在這一點取極小值。

一階導數為零,那麼為穩定點,二階導數為1>0,那麼一階導數在此點左邊為負,右邊為正,故原函式在此點左邊遞減,右邊遞增。即為極小值。

如果函式一階導數恆為0,那麼更高階導數必然都為0。類似的,一階導數為0,二階導數若小於0,那麼就是極大值了。

導數最大的作用是判斷複雜函式的單調性,我們可以很簡單的求一次導數,然後通過求導函式的根,就可以判斷出函式的單調區間,進而知道函式的趨勢影象,不過這只是最基礎的導數的應用。

求一次導數之後無法求出導函式的根,甚至也不能直接看出導函式的正負,因此無法判斷單調性,在高考中不管文理都有極大可能用到二階導數,雖然文科不談二階導數,其實只是把一階導數設為一個新函式,再對這個新函式求導,本質上依舊是二階導數。

擴充套件資料

二階導的用法:

判斷的單調性則需判斷的正負,假設的正負無法判斷,則把或者中不能判斷正負的部分(通常為分子部分)設為新函式,如果通過對進行求導繼而求最值,若或則可判斷出的正負繼而判斷的單調性。

如果調整函式轉化為一階導數並且還出現了一階導數最小值小於等於零,或一階導數最大值大於等於零的時候,則單純的二階導數將失靈,此時我們採用的是零點嘗試法,即確定一階導數的零點的大致位置。

零點嘗試法其實是無法求出一階導數的零點,且通過二階導數無法得出需要的一階導數的最值,此時一般可以根據二階導的恆正或恆負來判斷出一階導是否只有一個零點,若用零點存在性定理能判斷出一階導數只有一個零點,則設出這個零點為。

因為不知道準確零點的區間,因此可能很難找出符合題意區間的,例如確定出在某數之前或某數之後,但是所設的滿足=0,通過這個式子可以得到一個關於的等式。

然後所設的點肯定是原函式唯一的最值點,因此若求原函式的最值則需要結合這個等式,有的時候能求出一個不包含的最值或者含有一個很簡單的數或式子。

13樓:匿名使用者

應該說是函式在某一點處一階導數為0,二階導數為1,此時 表示函式在這一點取極小值(簡單解釋:一階導數為零,那麼為穩定點,二階導數為1>0,那麼一階導數在此點左邊為負,右邊為正,故原函式在此點左邊遞減,右邊遞增。即為極小值。

)如果函式一階導數恆為0,那麼更高階導數必然都為0.

類似的,一階導數為0,二階導數若小於0,那麼就是極大值了

14樓:衛理藍色蝴蝶飛

一階導數等於零,說明這個數是常數。二階導數等於1,說明原來的式子最高的是二次項,而且二次項是0.5x∧2

一階導數等於0二階導數等於0 這個點是什麼點

15樓:demon陌

這個說不準。沒準是極值點,比如y=x^4(4次方)這個函式,y'=4x³,y''=12x²,都是0,但是它是極小值點,可以檢驗x<0時候1階導數<0,x>0的時候1階導數大於零。 還有可能是拐點,比如y=x³這個函式,可以自己檢驗。

用分段的方法構造過一個在x=0無限階可導而且任何階導數都是0的函式,但是x=0是它的一個極小值點。

函式y=f(x)的導數y『=f』(x)仍然是x的函式,則y』=f』(x)的導數叫做函式y=f(x)的二階導數。在圖形上,它主要表現函式的凹凸性。

16樓:夢你落花

拐點或極值點,數學專業的建議參看數學分析簡明教程(鄧東皋,尹小玲 編著)第二版上冊p143-147

一階導等於零,二階導等於零,三階導不等於零那麼這個點是極值點嗎(求詳細證明)

17樓:

不是極值點。可用泰勒來證明。

在x0處展開為:

f(x)=f(x0)+f'(x0)(x-x0)+f"(x0)(x-x0)²/2!+f"'(x0)(x-x0)³/3!+.....

因為f'(x0)=f"(x0)=0, 故得:

f(x)-f(x0)=f"'(x0)(x-x0)³/3!+......

考慮x在x0處左右鄰域,f(x)-f(x0)的符號:

不妨設f"'(x0)>0, 則在x0左鄰域,f"'(x0)(x-x0)³/3!<0; 在右鄰域,f"'(x0)(x-x0)³/3!>0, 因此在

在x0左右鄰域,f(x)-f(x0)的符號由負變正,故x0不是極值點。

同樣若f"'(x0)<0, 也同樣得x0不是極值點。

另外,若三階導等於0,但四階導不等於0,則x0是極值點。

二階導數等於零的點一定是拐點嗎,為什麼二階導數等於0是拐點不是還有不存在點嗎

不一定,有可能是極值點 例如y x 4 x的4次方 這個函式在x 0點的二階導數就是0,但是x 0是這個函式的極值點而不是拐點。是的。拐點處的bai二階導du數都為0,如果二階zhi導數等於0還要證明該dao點的左邊和回右邊二階導數符答號相反,即左負右正或左正右負才是拐點。否則就是不存在。一階導數描...

一階導數等於0,二階導數等於1,表示什麼

函式在某一點處一階導數為0,二階導數為1,此時 表示函式在這一點取極小值。一階導數為零,那麼為穩定點,二階導數為1 0,那麼一階導數在此點左邊為負,右邊為正,故原函式在此點左邊遞減,右邊遞增。即為極小值。如果函式一階導數恆為0,那麼更高階導數必然都為0。類似的,一階導數為0,二階導數若小於0,那麼就...

一階導數大於0,二階導數也大於0的函式有哪些

一階導數大於0意味著在該區間單調增,二階導數也大於0意味著是下凸函式,y a x a 1 這類指數函式符合 函式的一階導數大於0,它的二階導數也一定大於0嗎 一階導數和二階導數符號無關。如lnx導數為1 x,大於0,但其二階導數為 1 x 2 恆小於0.函式的一階導數大於0,它的二階導數也一定大於0...