一階導數等於0,二階導數等於1,表示什麼

2021-03-05 09:48:42 字數 4909 閱讀 3544

1樓:匿名使用者

函式在某一點處一階導數為0,二階導數為1,此時 表示函式在這一點取極小值。

一階導數為零,那麼為穩定點,二階導數為1>0,那麼一階導數在此點左邊為負,右邊為正,故原函式在此點左邊遞減,右邊遞增。即為極小值。

如果函式一階導數恆為0,那麼更高階導數必然都為0。類似的,一階導數為0,二階導數若小於0,那麼就是極大值了。

導數最大的作用是判斷複雜函式的單調性,我們可以很簡單的求一次導數,然後通過求導函式的根,就可以判斷出函式的單調區間,進而知道函式的趨勢影象,不過這只是最基礎的導數的應用。

求一次導數之後無法求出導函式的根,甚至也不能直接看出導函式的正負,因此無法判斷單調性,在高考中不管文理都有極大可能用到二階導數,雖然文科不談二階導數,其實只是把一階導數設為一個新函式,再對這個新函式求導,本質上依舊是二階導數。

擴充套件資料

二階導的用法:

判斷的單調性則需判斷的正負,假設的正負無法判斷,則把或者中不能判斷正負的部分(通常為分子部分)設為新函式,如果通過對進行求導繼而求最值,若或則可判斷出的正負繼而判斷的單調性。

如果調整函式轉化為一階導數並且還出現了一階導數最小值小於等於零,或一階導數最大值大於等於零的時候,則單純的二階導數將失靈,此時我們採用的是零點嘗試法,即確定一階導數的零點的大致位置。

零點嘗試法其實是無法求出一階導數的零點,且通過二階導數無法得出需要的一階導數的最值,此時一般可以根據二階導的恆正或恆負來判斷出一階導是否只有一個零點,若用零點存在性定理能判斷出一階導數只有一個零點,則設出這個零點為。

因為不知道準確零點的區間,因此可能很難找出符合題意區間的,例如確定出在某數之前或某數之後,但是所設的滿足=0,通過這個式子可以得到一個關於的等式。

然後所設的點肯定是原函式唯一的最值點,因此若求原函式的最值則需要結合這個等式,有的時候能求出一個不包含的最值或者含有一個很簡單的數或式子。

2樓:匿名使用者

應該說是函式在某一點處一階導數為0,二階導數為1,此時 表示函式在這一點取極小值(簡單解釋:一階導數為零,那麼為穩定點,二階導數為1>0,那麼一階導數在此點左邊為負,右邊為正,故原函式在此點左邊遞減,右邊遞增。即為極小值。

)如果函式一階導數恆為0,那麼更高階導數必然都為0.

類似的,一階導數為0,二階導數若小於0,那麼就是極大值了

3樓:衛理藍色蝴蝶飛

一階導數等於零,說明這個數是常數。二階導數等於1,說明原來的式子最高的是二次項,而且二次項是0.5x∧2

一階導數等於0二階導數等於0 這個點是什麼點

4樓:demon陌

這個說不準。沒準是極值點,比如y=x^4(4次方)這個函式,y'=4x³,y''=12x²,都是0,但是它是極小值點,可以檢驗x<0時候1階導數<0,x>0的時候1階導數大於零。 還有可能是拐點,比如y=x³這個函式,可以自己檢驗。

用分段的方法構造過一個在x=0無限階可導而且任何階導數都是0的函式,但是x=0是它的一個極小值點。

函式y=f(x)的導數y『=f』(x)仍然是x的函式,則y』=f』(x)的導數叫做函式y=f(x)的二階導數。在圖形上,它主要表現函式的凹凸性。

5樓:夢你落花

拐點或極值點,數學專業的建議參看數學分析簡明教程(鄧東皋,尹小玲 編著)第二版上冊p143-147

一階導等於0,二階導數大於0什麼意思

6樓:不想取名字啊西

代表該點為函式影象上的某個極小點。

拓展資料:1.極值點是函式影象的某段子區間內上極大值或者極小值點的橫座標,出現在函式的駐點或不可導點處。

極值點必定是駐點。但駐點不一定是極值點。

2.判別方法

(1)若函式可導

若函式可導,且一階導函式在該點兩邊正負號不同則  該點是函式的極大點(或極小點)

若函式存在二階導數,且某點一階導函式為零,若二階導函式大於零則是函式的極小點;若小於零則是函式  的極大點。

(2)若函式 在一些點不可導,則需要利用定義判斷。

7樓:匿名使用者

1) 表示該點是駐點;

2) 並在駐點鄰域內取極小值。

8樓:匿名使用者

函式與一階導區域範圍連續可導,一階導等於0 ,有極值和平行的兩種可能性,二階導大於0,為極小值。

一個函式的一階導數和二階導數都等於0說明什麼

9樓:匿名使用者

可用微分方程求解:

依據題意: y''+ y' = 0 (1)

特徵方程為: s^2+s = 0 (2)

解出: s1 = 0 s2 = -1 (3)

通解: y(x) = c1 + c2 e^(-x) (4)

即:一個函式的一階導數和二階導數都等於0,

說明該函式為(4)式:常數 c1 和 c2 由初始條件決定:

c1 +c2 = y(0)

c2 = -y'(0) c1 = y(0)+y'(0)

最後: y(x) = y(0) + y'(0)[1-e^(-x)] (5)

10樓:嫵媚飛雪

e∧x一階二階導永遠大於零啊

11樓:匿名使用者

f(x)=c,c為任意實數.

請採納,謝謝!

一二階導數等於零各是什麼意義

12樓:g燦寶兒

一階導數等於零表示函式斜率固定,一階導數等於0只是有極值的必要條件,不是充分條件,也就是說:有極值的地方,其切線的斜率一定為0;切線斜率為0的地方,不一定是極值點。

二階導數沒有特別的幾何意義,通常可以根據二階導數的符號變化,判斷函式曲線的凹凸性及拐點,或用來判斷所求駐點是否是極值點並且取得極大還是極小。二階導數等於零說明此為函式的極點。

擴充套件資料

二階導數的性質

1、如果一個函式f(x)在某個區間i上有f''(x)(即二階導數)>0恆成立,那麼對於區間i上的任意x,y,總有:

f(x)+f(y)≥2f[(x+y)/2],如果總有f''(x)<0成立,那麼上式的不等號反向。

2、判斷函式極大值以及極小值。

結合一階、二階導數可以求函式的極值。當一階導數等於0,而二階導數大於0時,為極小值點。當一階導數等於0,而二階導數小於0時,為極大值點;當一階導數和二階導數都等於0時,為駐點。

3、函式凹凸性。

設f(x)在[a,b]上連續,在(a,b)內具有一階和二階導數,那麼,若在(a,b)內f''(x)>0,則f(x)在[a,b]上的圖形是凹的;若在(a,b)內f''(x)<0,則f(x)在[a,b]上的圖形是凸的。

13樓:雙子星的墮落

一階導數等於零表示函式斜率固定

二階導數沒有特別的幾何意義,通常可以根據二階導數的符號變化,判斷函式曲線的凹凸性及拐點,或用來判斷所求駐點是否是極值點並且取得極大還是極小。二階導數等於零說明此為函式的極點

14樓:悅瑙

一階導為零的點叫駐點,某點是函式的極值點的必要條件是該點處一階導為零,某點是函式的拐點的必要條件是該點處二階導為零。

一二階導數等於零各是什麼意義?

15樓:拱千亦仲彤

一階導數等於零表示函式斜率固定

二階導數沒有特別的幾何意義,通常可以根據二階導數的符號變化,判斷函式曲線的凹凸性及拐點,或用來判斷所求駐點是否是極值點並且取得極大還是極小。二階導數等於零說明此為函式的極點

一階導數等於0為什麼二階導數還可以不為0??0的導數不就是0嗎

16樓:小小芝麻大大夢

一階函式恆為零的話,自然二階導數就是零了,但是如果僅僅是在駐點處(一階導數值等於零的點的話)才為零的話,二階導數自然就可以不為零了。

導數(英語:derivative)是微積分學中重要的基礎概念。一個函式在某一點的導數描述了這個函式在這一點附近的變化率。導數的本質是通過極限的概念對函式進行區域性的線性逼近。

當函式f的自變數在一點x0上產生一個增量h時,函式輸出值的增量與自變數增量h的比值在h趨於0時的極限如果存在,即為f在x0處的導數。

擴充套件資料

一階導數表示的是函式的變化率,最直觀的表現就在於函式的單調性。

定理:設f(x)在[a,b]上連續,在(a,b)內具有一階導數,那麼:

(1)若在(a,b)內f'(x)>0,則f(x)在[a,b]上的圖形單調遞增;

(2)若在(a,b)內f』(x)<0,則f(x)在[a,b]上的圖形單調遞減;

(3)若在(a,b)內f'(x)=0,則f(x)在[a,b]上的圖形是平行(或重合)於x軸的直線,即在[a,b]上為常數。

17樓:匿名使用者

一階導數為0和一階導數在某點處為0是不同的.一階導數為0,意思是其一階導數在定義域內恆為0(說白了就是定義域上的常值函式),那麼二階導數也必然是0.但是一階導數在某點處為0,說白了只是該點處的斜率為0,但不代表二階導數("斜率"的"斜率")為0.

最簡單的例子是f(x)=x^2,那麼一階導數為2x(在x=0處,一階導數為0),二階導數為2(恆不為0).

18樓:一個調的情歌

你說的是某一個點的導數吧

一階導數和二階導數在 t=0 時同時等於0 說明什麼

19樓:電燈劍客

這種條件太弱, 基本上不說明什麼問題

這樣的函式很容易找, 比如說f(t)=t^4

二階導數等於0嗎?二階導數等於0是什麼意思?

一階導數等於零表示函式斜率固定,一階導數等於0只是有極值的必要條件,不是充分條件,也就是說 有極值的地方,其切線的斜率一定為0 切線斜率為0的地方,不一定是極值點。二階導數沒有特別的幾何意義,通常可以根據二階導數的符號變化,判斷函式曲線的凹凸性及拐點,或用來判斷所求駐點是否是極值點並且取得極大還是極...

二階導數存在一階導數一定存在麼,二階導數存在,是不是說明一階導數一定連續

f x 的二階導數可以看做是一階導數的導數,所以一階導數肯定是存在且連續的 一階導數不連續,顯然一階導數的導數就不存在了,即原函式的二階導數不存在 二階導數存在,是不是說明一階導數一定連續 二階導數存在說明一階導數可導,可導必連續 因此童鞋 二階導數的存在就以證明一階導數是連續的 解答 這個是必須的...

一階導數大於0,二階導數也大於0的函式有哪些

一階導數大於0意味著在該區間單調增,二階導數也大於0意味著是下凸函式,y a x a 1 這類指數函式符合 函式的一階導數大於0,它的二階導數也一定大於0嗎 一階導數和二階導數符號無關。如lnx導數為1 x,大於0,但其二階導數為 1 x 2 恆小於0.函式的一階導數大於0,它的二階導數也一定大於0...