三角函式計算公式誰知道

2021-12-19 11:21:54 字數 7024 閱讀 6367

1樓:匿名使用者

三角函式公式表

同角三角函式的基本關係式

倒數關係: 商的關係: 平方關係:

tanα •cotα=1

sinα •cscα=1

cosα •secα=1 sinα/cosα=tanα=secα/cscα

cosα/sinα=cotα=cscα/secα sin2α+cos2α=1

1+tan2α=sec2α

1+cot2α=csc2α

(六邊形記憶法:圖形結構「上弦中切下割,左正右餘中間1」;記憶方法「對角線上兩個函式的積為1;陰影三角形上兩頂點的三角函式值的平方和等於下頂點的三角函式值的平方;任意一頂點的三角函式值等於相鄰兩個頂點的三角函式值的乘積。」)

誘導公式(口訣:奇變偶不變,符號看象限。)

sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα

sin(π/2-α)=cosα

cos(π/2-α)=sinα

tan(π/2-α)=cotα

cot(π/2-α)=tanα

sin(π/2+α)=cosα

cos(π/2+α)=-sinα

tan(π/2+α)=-cotα

cot(π/2+α)=-tanα sin(π-α)=sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotα

sin(π+α)=-sinα

cos(π+α)=-cosα

tan(π+α)=tanα

cot(π+α)=cotα sin(3π/2-α)=-cosα

cos(3π/2-α)=-sinα

tan(3π/2-α)=cotα

cot(3π/2-α)=tanα

sin(3π/2+α)=-cosα

cos(3π/2+α)=sinα

tan(3π/2+α)=-cotα

cot(3π/2+α)=-tanα sin(2π-α)=-sinα

cos(2π-α)=cosα

tan(2π-α)=-tanα

cot(2π-α)=-cotα

sin(2kπ+α)=sinα

cos(2kπ+α)=cosα

tan(2kπ+α)=tanα

cot(2kπ+α)=cotα

(其中k∈z)

兩角和與差的三角函式公式 萬能公式

sin(α+β)=sinαcosβ+cosαsinβ

sin(α-β)=sinαcosβ-cosαsinβ

cos(α+β)=cosαcosβ-sinαsinβ

cos(α-β)=cosαcosβ+sinαsinβ

tanα+tanβ

tan(α+β)=——————

1-tanα •tanβ

tanα-tanβ

tan(α-β)=——————

1+tanα •tanβ 2tan(α/2)

sinα=——————

1+tan2(α/2)

1-tan2(α/2)

cosα=——————

1+tan2(α/2)

2tan(α/2)

tanα=——————

1-tan2(α/2)

半形的正弦、餘弦和正切公式 三角函式的降冪公式

二倍角的正弦、餘弦和正切公式 三倍角的正弦、餘弦和正切公式

sin2α=2sinαcosα

cos2α=cos2α-sin2α=2cos2α-1=1-2sin2α

2tanα

tan2α=—————

1-tan2α sin3α=3sinα-4sin3α

cos3α=4cos3α-3cosα

3tanα-tan3α

tan3α=——————

1-3tan2α

三角函式的和差化積公式 三角函式的積化和差公式

α+β α-β

sinα+sinβ=2sin———•cos———

2 2

α+β α-β

sinα-sinβ=2cos———•sin———

2 2

α+β α-β

cosα+cosβ=2cos———•cos———

2 2

α+β α-β

cosα-cosβ=-2sin———•sin———

2 2 1

sinα •cosβ=-[sin(α+β)+sin(α-β)]21

cosα •sinβ=-[sin(α+β)-sin(α-β)]21

cosα •cosβ=-[cos(α+β)+cos(α-β)]21

sinα •sinβ=— -[cos(α+β)-cos(α-β)]

2化asinα ±bcosα為一個角的一個三角函式的形式(輔助角的三角函式的公式)

2樓:匿名使用者

公式計算太麻煩

但用電腦就太方便了

這個可免費

計算體面積之類的

3樓:匿名使用者

買一本數學公式大全就ok了。

4樓:

我就寫了

sinαcosβ+sinβcosα=sin(α+β)cosαcosβ-sinαsinβ=cos(α+β)tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)其他的都是根據這幾個導的

5樓:

正弦函式 sin(a)=a/h

餘弦函式 cos(a)=b/h

正切函式 tan(a)=a/b

餘切函式 cot(a)=b/a

正割函式 sec (a) =h/b

餘割函式 csc (a) =h/a

注:a—所研究角的對邊

b—所研究的鄰邊

h—所研究角的斜邊

三角函式常用公式:

同角三角函式間的基本關係式:

·平方關係:

sin^2(α)+cos^2(α)=1

tan^2(α)+1=sec^2(α)

cot^2(α)+1=csc^2(α)

·商的關係:

tanα=sinα/cosα cotα=cosα/sinα

·倒數關係:

tanα·cotα=1

sinα·cscα=1

cosα·secα=1

三角函式恆等變形公式:

·兩角和與差的三角函式:

cos(α+β)=cosα·cosβ-sinα·sinβ

cos(α-β)=cosα·cosβ+sinα·sinβ

sin(α±β)=sinα·cosβ±cosα·sinβ

tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

·倍角公式:

sin(2α)=2sinα·cosα

cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

tan(2α)=2tanα/[1-tan^2(α)]

·三倍角公式:

sin3α=3sinα-4sin^3(α)

cos3α=4cos^3(α)-3cosα

·半形公式:

sin^2(α/2)=(1-cosα)/2

cos^2(α/2)=(1+cosα)/2

tan^2(α/2)=(1-cosα)/(1+cosα)

tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα

·萬能公式:

sinα=2tan(α/2)/[1+tan^2(α/2)]

cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]

tanα=2tan(α/2)/[1-tan^2(α/2)]

·積化和差公式:

sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]

cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]

cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]

sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]

·和差化積公式:

sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]

sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]

cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]

cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]

6樓:理文毓小凝

sina^2+cosa^2=1

sina=cos(pi/2-a)

7樓:

三角函式是數學中屬於初等函式中的超越函式的一類函式。它們的本質是任意角的集合與一個比值的集合的變數之間的對映。通常的三角函式是在平面直角座標系中定義的,其定義域為整個實數域。

另一種定義是在直角三角形中,但並不完全。現代數學把它們描述成無窮數列的極限和微分方程的解,將其定義擴充套件到複數系。

由於三角函式的週期性,它並不具有單值函式意義上的反函式。

三角函式在複數中有較為重要的應用。在物理學中,三角函式也是常用的工具。

它有六種基本函式:

函式名 正弦 餘弦 正切 餘切 正割 餘割

符號 sin cos tan cot sec csc

正弦函式 sin(a)=a/h

餘弦函式 cos(a)=b/h

正切函式 tan(a)=a/b

餘切函式 cot(a)=b/a

在某一變化過程中,兩個變數x、y,對於某一範圍內的x的每一個值,y都有確定的值和它對應,y就是x的函式。這種關係一般用y=f(x)來表示。

兩角和公式

sin(a+b)=sinacosb+cosasinb

sin(a-b)=sinacosb-sinbcosa �

cos(a+b)=cosacosb-sinasinb

cos(a-b)=cosacosb+sinasinb

tan(a+b)=(tana+tanb)/(1-tanatanb)

tan(a-b)=(tana-tanb)/(1+tanatanb)

cot(a+b)=(cotacotb-1)/(cotb+cota) �

cot(a-b)=(cotacotb+1)/(cotb-cota)

倍角公式

tan2a=2tana/[1-(tana)^2]

cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2

sin2a=2sina*cosa

三倍角公式

sin3a=3sina-4(sina)^3

cos3a=4(cosa)^3-3cosa

tan3a=tana*tan(π/3+a)*tan(π/3-a)

半形公式

sin(a/2)=√((1-cosa)/2) sin(a/2)=-√((1-cosa)/2)

cos(a/2)=√((1+cosa)/2) cos(a/2)=-√((1+cosa)/2)

tan(a/2)=√((1-cosa)/((1+cosa)) tan(a/2)=-√((1-cosa)/((1+cosa))

cot(a/2)=√((1+cosa)/((1-cosa)) cot(a/2)=-√((1+cosa)/((1-cosa)) �

tan(a/2)=(1-cosa)/sina=sina/(1+cosa)

和差化積

2sinacosb=sin(a+b)+sin(a-b)

2cosasinb=sin(a+b)-sin(a-b) )

2cosacosb=cos(a+b)+cos(a-b)

-2sinasinb=cos(a+b)-cos(a-b)

sina+sinb=2sin((a+b)/2)cos((a-b)/2

cosa+cosb=2cos((a+b)/2)sin((a-b)/2)

tana+tanb=sin(a+b)/cosacosb

積化和差公式

sin(a)sin(b)=-1/2*[cos(a+b)-cos(a-b)]

cos(a)cos(b)=1/2*[cos(a+b)+cos(a-b)]

sin(a)cos(b)=1/2*[sin(a+b)+sin(a-b)]

誘導公式

sin(-a)=-sin(a)

cos(-a)=cos(a)

sin(pi/2-a)=cos(a)

cos(pi/2-a)=sin(a)

sin(pi/2+a)=cos(a)

cos(pi/2+a)=-sin(a)

sin(pi-a)=sin(a)

cos(pi-a)=-cos(a)

sin(pi+a)=-sin(a)

cos(pi+a)=-cos(a)

tga=tana=sina/cosa

萬能公式

sin(a)= (2tan(a/2))/(1+tan^2(a/2))

cos(a)= (1-tan^2(a/2))/(1+tan^2(a/2))

tan(a)= (2tan(a/2))/(1-tan^2(a/2))

其它公式

a*sin(a)+b*cos(a)=sqrt(a^2+b^2)sin(a+c) [其中,tan(c)=b/a]

a*sin(a)-b*cos(a)=sqrt(a^2+b^2)cos(a-c) [其中,tan(c)=a/b]

1+sin(a)=(sin(a/2)+cos(a/2))^2

1-sin(a)=(sin(a/2)-cos(a/2))^2

其他非重點三角函式

csc(a)=1/sin(a)

sec(a)=1/cos(a)

雙曲函式

sinh(a)=(e^a-e^(-a))/2

cosh(a)=(e^a+e^(-a))/2

tgh(a)=sinh(a)/cosh(a)

三角函式常用公式,三角函式公式大全

一 倍角公式 1 sin2a 2sina cosa 2 cos2a cosa 2 sina 2 1 2sina 2 2cosa 2 1 3 tan2a 2tana 1 tana 2 注 sina 2 是sina的平方 sin2 a 二 降冪公式 1 sin 2 1 cos 2 2 versin 2 ...

數學三角函式公式

三角函式公式表 同角三角函式的基本關係式 倒數關係 商的關係 平方關係 tan cot 1 sin csc 1 cos sec 1 sin cos tan sec csc cos sin cot csc sec sin2 cos2 1 1 tan2 sec2 1 cot2 csc2 六邊形記憶法 圖...

三角函式換算公式,三角函式的值怎麼換算成角度啊?

同角三角函式的基本關係式 倒數關係 tan cot 1 sin csc 1 cos sec 1 商的關係 sin cos tan sec csc cos sin cot csc sec 平方關係 sin 2 cos 2 1 1 tan 2 sec 2 1 cot 2 csc 2 同角三角函式關係六角...