二重積分割槽域範圍怎麼確定,二重積分割槽域範圍怎麼確定

2021-03-03 21:32:58 字數 3163 閱讀 9285

1樓:匿名使用者

這個是要畫圖的哦,這題是典型的座標系轉換求解。

初始條件給的是極座標系的範圍,要轉換成直角座標系,可以用**法。

利用極座標計算二重積分中,θ的範圍如何確定

2樓:桑葚味的小桑葚

確定θ的範圍的方法:看這個區域所在的象限範圍,解兩曲線的交點座標(x,y)後,角度θ=arctan(y/x),就可得到θ的範圍。極座標θ的變化都是從原點位置開始掃起的。

注意角度必須是弧度制。

一般分3種情況:

1、原點(極點)在積分割槽域的內部,角度範圍從0到2π;

2、原點(極點)在積分割槽域的邊界,角度範圍從區域的邊界,按逆時針方向掃過去,到另一條止;

3、原點(極點)在積分割槽域之外,角度範圍從區域的靠極軸的邊界,按逆時針方向掃過去,到另一條止。

3樓:是你找到了我

1、原點(極點)在積分割槽域的內部

,θ的範圍從0到2π;

2、原點(極點)在積分割槽域的邊界,θ的範圍從區域的邊界,按逆時針方向掃過去;

3、原點(極點)在積分割槽域之外,θ的範圍從區域的靠極軸的邊界,按逆時針方向掃過去。

有許多二重積分僅僅依靠直角座標下化為累次積分的方法難以達到簡化和求解的目的。當積分割槽域為圓域,環域,扇域等,或被積函式為

等形式時,採用極座標會更方便。

4樓:匿名使用者

極座標r的範圍,可以畫一個從原點指向出來的箭頭,先穿越的曲線就是下限,後穿越的曲線就是上線。

角度θ的範圍就是看這個區域所在的象限範圍,解兩曲線的交點座標(x,y)後,角度θ=arctan(y/x),如圖中,角度就是由0變化到π/2

二重積分用極座標形式θ怎麼確定範圍,根據什麼,是d還是根據被積分的部分啊,極座標完全不太懂。 10

5樓:不是苦瓜是什麼

極座標r的範圍,可以畫一個從原點指向出來的箭頭,先穿越的曲線就是下限,後穿越的曲線就是上線。

角度θ的範圍就是看這個區域所在的象限範圍,解兩曲線的交點座標(x,y)後,角度θ=arctan(y/x),如圖中,角度就是由0變化到π/2。

1、原點(極點)在積分割槽域的內部,θ的範圍從0到2π;

2、原點(極點)在積分割槽域的邊界,θ的範圍從區域的邊界,按逆時針方向掃過去;

3、原點(極點)在積分割槽域之外,θ的範圍從區域的靠極軸的邊界,按逆時針方向掃過去。

6樓:后街老訞

沒有題不太好回答,θ的取值範圍一般是根據草圖確定的,直接通過直角座標系就可以得到,比如說被積區域是圓心在原點處的整個圓,那麼就取2派,若只取上半個圓就取0到派,等等,若是半徑為1 圓心在(0,1)處的整個圓,就取0到派,。這樣說就懂了吧。先理解好被積函式是1的時候,極座標是怎麼計算面積(被積函式是1)就懂了

7樓:木沉

極座標只是座標變換,雖然引數域發生了改變,但是被表示的點是不會變化的。

所以theta的範圍應該根據被積分的區域來定。

二重積分的區域d怎麼劃分?

8樓:俊蕎巔永

二重積分的區域baid劃分方法如下du:

(1)可以zhi化為極座標,1<=r<=2∫∫dao

<1=dxdy=∫(1,2)∫(0,2π)r^版2 rdrda=2π*r^4/4(2,1)=(16-1)π/2=15π/2

(2) 是由權兩座標軸與直線x+y=2圍成的區域;

(3)其中d是頂點分別為(0,0),(π,0)和(π,π)的三角形區域;

(4) ,其中d是頂點分別為(0,0),(1,0),(1,2)和(0,1)的梯形閉區域;

(5) ,其中d是由,y=x2所圍成;

9樓:神乃木大叔

與你先積

那個來變數有關源:

假設你先積dy,

那麼dy的積分上下限分別是(根號x,x^2)dx的積分

的上下限確定方法就是

y=根號(x)與y=x^2聯立

解出x1=1,x2=0

那麼dx的上下限就是(1,0)

寫出來就是∫(0,1)dx∫(x^2,根號x)dy f(x,y)問題補充:你畫出這兩個函式的影象,發現在他們兩個交點之間的部分,根號x影象在x^2的上方

上限是根號x,下限是x^2

10樓:匿名使用者

關於二重積分的區域d 形式為∫∫62616964757a686964616fe59b9ee7ad9431333238666261*dxdy=∫*dy∫*dx(*為式子)

這個先定x 比方說這題 根號(x) 很顯然x>0

再定y 因為先定的x 在草紙上把y=根號(x)與y=x^2的影象畫出來 注意這裡x>0 所有影象只可能在第一象限 我們發現y=根號(x)與y=x^2的影象本身就有一個交點在x=1處 因而本題分2種情況 x從[0,1]和[1,正無窮)

若x從[0,1] 很顯然 y=根號(x)的影象在y=x^2的影象上面 在x正半軸[0,1]上任意畫一條垂直於x軸的線 該線肯定交y=根號(x)與y=x^2的影象於2點的

則在[0,1]內y的閉區域為[x^2,根號x]

同理若x從[1,正無窮)很顯然 y=根號(x)的影象在y=x^2的影象下面 在x正半軸[1,正無窮)上任意畫一條垂直於x軸的線 該線肯定交y=根號(x)與y=x^2的影象於2點的 則在[1,正無窮)內y的閉區域為[根號x,x^2)

則綜合為

∫∫*dxdy=∫(x^2 下標 根號x 上標)dy∫(0 下標 1 上標)dx+∫(根號x下標 x^2 上標)dy∫(1 下標 正無窮 上標)dx

如果不懂可以call我

關於這個dy的積分上下限分別是(x^2,根號x)```為什麼不是(根號x,x^2)?

上面有解答 [0,1]內 根號x〉x^2 所以只能是(x^2,根號x)`

而[1,正無窮)內 根號x

如圖,這個二重積分範圍怎麼找?

11樓:爽朗的

這個你看是找dx還是dy區域,找x區域的話就是直接在x上面找常數範圍,再畫一條垂直與x的直線,得到y的函式範圍

12樓:j機械工程

這個不是給出來了嗎x=y x=1 y=0

擺線為區域的二重積分,高數二重積分擺線

解答 當把原積分化為先對y 後對x的積分時,在把x的積分限確定之後,為了確定y的積分限,通常的做法是在橫軸座標為x的變化區間內隨便一點x處,作垂直於x軸的直線,從下向上看該直線時,直線進入原積分割槽域的點對應的縱座標即為y的下限,直線穿出原積分割槽域的點對應的縱座標為y的上限。在極座標系 下計算二重...

曲線積分與二重積分的區別二重積分與曲線積分割槽別

1 定義不 同曲線積分 二重積分 2 物理意義不同 曲線積分 由x軸上兩個點所確定的範圍內 一條線段 那條曲線和座標軸 x軸 所圍成的面積。二重積分 分別由x,y軸上兩點確定的一個範圍內 一個面 那個曲面和座標平面 xy平面 所圍成的體積。3 適用範圍不同 曲線積分只能用來處理二維平面中的問題。二重...

二重積分證明,二重積分證明題

證明過程如圖所示,只要交換一下二重積分的次序就容易化簡了。二重積分證明題 4 先交換積分次序 再利用變上限積分求導湊微分 解出二重積分,得到等式成立 詳解如下 1 由於x 2 y 2對於x,y是偶函式,因此可將兩者的積分割槽域都擴充套件到全平面,此時新得到的兩個積分分別是原來的四倍。這一步沒有也沒關...