線性代數矩陣A的行列式A4,求A

2021-03-03 21:47:26 字數 1717 閱讀 3121

1樓:拜讀尋音

我只能呵呵了。。。。。。。

2樓:匿名使用者

16啊 不解釋

線性代數矩陣中|a|與a*是什麼意思?

3樓:不是苦瓜是什麼

|是|a|是a的行列式,又記為deta,a*是指矩陣a的伴隨矩陣,是由a的元素的代數餘子式按照交換行列標的順序構成的同級矩陣。

伴隨矩陣的定義:某矩陣a各元素的代數餘子式,組成一個新的矩陣後再進行一下轉置,叫做a的伴隨矩陣。

某元素代數餘子式就是去掉矩陣中某元素所在行和列元素後的形成矩陣的行列式,再乘上-1的(行數+列數)次方。

aa*=a*a=|a|e。

證明其實整體不算難,一個是要想到那個矩陣秩不等式,會靈活運用,另一個是要想到矩陣秩的另一個定義。一般矩陣秩是定義為行向量組的極大線性無關組的向量個數,其實矩陣秩還有另一個定義:最高階非0子式的階數。

當a的秩為n時,a可逆,a*也可逆,故a*的秩為n;當a的秩為n-1時,根據秩的定義可知,a存在不為0的n-1階餘子式,故a*不等於0,又根據上述公式aa*=0而a的秩小於n-1可知a的任意n-1階餘子式都是0,a*的所有元素都是0,是0矩陣,秩也就是0。

4樓:萬物凋零時遇見

|a|是a的行列式,又記為deta,a*是指矩陣a的伴隨矩陣,是由a的元素的代數餘子式按照交換行列標的順序構成的同級矩陣。 伴隨矩陣的定義:某矩陣a各元素的代數餘子式,組成一個新的矩陣後再進行一下轉置,叫做a的伴隨矩陣。

某元素代數餘子式就是去掉矩陣中某元素所在行和列元素後的形成矩陣的...」

5樓:

|a|是a的行列式,a*代表a的伴隨矩陣

6樓:匿名使用者

|a| 與 a* 分別表示矩陣 a 的行列式和伴隨矩陣。

線性代數問題:為什麼a的行列式乘以a的伴隨矩陣的行列式等於a的行列式的n-1次方。

7樓:drar_迪麗熱巴

|^aa*=|a|e;|aa*|=|a|^n

把|a|提到e裡面去,會發現從左上到右下的一列數都是|a|,所以|a|e=|a|^n。

矩陣行列式(determinant of a matrix)是指矩陣的全部元素構成的行列式,設a=(aij)是數域p上的一個n階矩陣,則所有a=(aij)中的元素組成的行列式稱為矩陣a的行列式,記為|a|或det(a)。

若a,b是數域p上的兩個n階矩陣,k是p中的任一個數,則|ab|=|a||b|,|ka|=kn|a|,|a*|=|a|n-1,其中a*是a的伴隨矩陣;若a是可逆矩陣,則|a-1|=|a|-1。

相關定理

定理1 設a為一n×n矩陣,則det(at)=det(a)[2]。

證 對n採用數學歸納法證明。顯然,因為1×1矩陣是對稱的,該結論對n=1是成立的。假設這個結論對所有k×k矩陣也是成立的,對(k+1)×(k+1)矩陣a,將det(a)按照a的第一行,我們有:

det(a)=a11det(m11)-a12det(m12)+-...±a1,k+1det(m1,k+1)。

定理2 設a為一n×n三角形矩陣。則a的行列式等於a的對角元素的乘積。

根據定理1,只需證明結論對下三角形矩陣成立。利用餘子式和對n的歸納法,容易證明這個結論。

8樓:盛夏曉光

aa*=|a|e

|aa*|=|a|^n

線性代數,求行列式

第一種方法 d a 2 a 1 a 1 1 a 2 a 1 a 1 b 2 b 1 b 1 1 b 2 b 1 b 1 c 2 c 1 c 1 1 c 2 c 1 c 1 d 2 d 1 d 1 1 d 2 d 1 d 1 a 2 a 1 a 1 a 1 1 a 1 a 2 b 2 b 1 b 1 ...

關於線性代數行列式線性代數行列式換行為什麼要加

z x 1 1 x2 y2 1 y y2 y2 x2 1 y y y2 x2 z y 1 1 x2 y2 x y2 x y2 x2 2z x2 y y2 x2 2 行列式換行要加負號嗎?矩陣要加嗎?只有求行列 式時來換行才需要加源 由行列式的性質可以知道,交換行列式的任意兩行 或兩列 行列式改變符號...

高等數學,線性代數,數學,矩陣與行列式,分塊矩陣初等變換,一。下面23,(1)可不可以用底下圈裡那

你寫的做法裡前兩個等號都是錯的 如果你想問為什麼錯,那你先問問自己為什麼會認為這是對的 1 左端的那個行列式表示的是 2 當中的那個分塊矩陣的行列式,加不加括號無所謂 高等數學,線性代數,數學,矩陣,兩行相同的時候可以互相減麼,可以變成第二幅圖嗎 不能,只能一行一行的來,你那樣做變形後矩陣就和原先的...