1樓:
因為bailim(x→+∞)f(x)存在且有限,du設為c
根據定義,任zhi意ε
dao>0,存在x>a,當x>x,有|f(x)-c|<ε不妨取ε=1
即有回,c-1答[a,+∞)上連續
那麼,對上述x>a,有f(x)在區間[a,x]上連續因此,由最值定理得:f(x)在[a,x]上必有最大值f(x)max和最小值f(x)min
即有:f(x)min≤f(x)≤f(x)max,x∈[a,x]那麼,取:
max=max
min=min
於是,有:
min≤f(x)≤max,x∈[a,+∞)因此f(x)有界
有不懂歡迎追問
若f(x)在[a,+∞)上連續,且limx→+∞f(x)存在,證明f(x)在[a,+∞)上有界
2樓:drar_迪麗熱巴
因為lim(x->+∞)f(x)存在,不妨令其為a
則根據極限定義,對ε=1,存在正數d>0,使對任意x>d,有|f(x)-a|<1
即a-1若da,有a-1若d>=a,因為f(x)在[a,d]上連續,所以f(x)在[a,d]上有界
即f(x)在[a,d]∪(d,+∞)=[a,+∞)上有界
綜上所述,f(x)在[a,+∞)上有界
若存在兩個常數m和m,使函式y=f(x),x∈d 滿足m≤f(x)≤m,x∈d 。 則稱函式y=f(x)在d有界,其中m是它的下界,m是它的上界。
關於函式的有界性.應注意以下兩點:
(1)函式在某區間上不是有界就是無界,二者必屬其一;
(2)從幾何學的角度很容易判別一個函式是否有界(見圖2).如果找不到兩條與x軸平行的直線使得函式的圖形介於它們之間,那麼函式一定是無界的。
如果自變數在某一點處的增量趨於0時,對應函式值的增量也趨於0,就把f(x)稱作是在該點處連續的。
注意:在函式極限的定義中曾經強調過,當x→x0時f(x)有沒有極限,與f(x)在點x0處是否有定義並無關係。
但由於現在函式在x0處連續,則表示f(x0)必定存在,顯然當δx=0(即x=x0)時δy=0<ε。於是上述推導過程中可以取消0<|δx|這個條件。
3樓:普海的故事
設limf(x)=a (x趨於無窮大)
∴任意ε 存在x>a 當x>x時 |f(x)-a|<ε/4 ∴對任意x1、x2∈(x,+∞) 有|f(x1)-f(x2)|≤|f(x1)-a|+|f(x2)-a|<ε/2
由康託定理 f(x)在[a,x]一致連續 因而存在δ 從而對任意x1,x2∈[a,+∞)只要|x1-x2|<δ 就有|f(x1)-f(x2)|<ε/2+ε/2=ε ∴其一致連續 設函式f(x)在區間[a,+∞)上連續,並且極限limx→∞f(x)存在且有限,證明f(x)? 4樓:豌豆凹凸秀 因為lim(x->+∞)f(x)存在,不妨令其為a 則根據極限定義,對ε=1,存在正數d>0,使對任意x>d,有|f(x)-a|<1 即a-1若da,有a-1若d>=a,因為f(x)在[a,d]上連續,所以f(x)在[a,d]上有界 即f(x)在[a,d]∪(d,+∞)=[a,+∞)上有界 綜上所述,f(x)在[a,+∞)上有界 若存在兩個常數m和m,使函式y=f(x),x∈d 滿足m≤f(x)≤m,x∈d 。 則稱函式y=f(x)在d有界,其中m是它的下界,m是它的上界。 關於函式的有界性.應注意以下兩點: (1)函式在某區間上不是有界就是無界,二者必屬其一; (2)從幾何學的角度很容易判別一個函式是否有界(見圖2).如果找不到兩條與x軸平行的直線使得函式的圖形介於它們之間,那麼函式一定是無界的。 如果自變數在某一點處的增量趨於0時,對應函式值的增量也趨於0,就把f(x)稱作是在該點處連續的。 注意:在函式極限的定義中曾經強調過,當x→x0時f(x)有沒有極限,與f(x)在點x0處是否有定義並無關係。 但由於現在函式在x0處連續,則表示f(x0)必定存在,顯然當δx=0(即x=x0)時δy=0<ε。於是上述推導過程中可以取消0<|δx|這個條件。 設函式f(x)在區間[a,+∞)上連續,有lim(x→+∞)f(x)存在且有限,則f(x)在[a,+∞)上____ a有界 b無界 5樓:符離 有界的意思並不是非得有上界有下界:如果這個函式在趨於正無窮有上屆就稱他有界,如果趨於負無窮有下界也叫有界 6樓:茹翊神諭者 詳情如圖所示 有任何疑惑,歡迎追問 設函式f在[0,+∞]上具有連續的導函式,且lim(x→+∞)f'(x)存在有限,0 7樓:匿名使用者 ^不妨lim(x→+∞)f'(x)=b>0,存在c當x>c時b/2版一致,權[lgc/lga,+∞],|f(x1^a)-f(x2^a)| 8樓:匿名使用者 是不是要用定義證啊?否則f連續f^a肯定連續啊 設函式f(x)在區間[a,+∞)上可導,並且limx→+∞[f(x)+af'(x)]=l(a>0)? 9樓:匿名使用者 最佳答案:證明:(1)由於limx→+∞f(x)=2,所以對??>0,?x>0,當x>x時,2-? 1,證 設f x f x x 則來f x 在區間 a,b 上連續,因為源f a f a a 0 f b f b b 0所以存在一點 a,b 使得f 0 即 f 0 f 2,sinx的原函式是 cosx 設函式f x 在區間 a,b 上連續,且f a b。證明存在 a,b 使得f 令g x f x x... x t u dx du f x 0,1 f x t dt f x x,x 1 f u du 0,x 1 f u du 0,x f u du f x f x 1 f x 設函式f x 在 內連續,則關於f x 1x x0f t dt x 0 的下列四個結論 1若f x 為 1 f x f x f x ... 因為來f x 0決定了f x 的單調性,也就是源 bai當f x 大於0時f x 單調增加,因du為當0u,所以f 1 x f u 因為f x 的上 下限嚴格從小zhi到大,故daof x 0,另一個已然。打字太麻煩了,已知f x 是定義在 0,正無窮 上的增函式,且f x y f x f y f ...設函式fx在區間上連續,且faa,fb
證明設fx在連續,則函式Fx
設函式fx在區間0上可導,且fx0,F