大學課程中的數學分析很難嗎?數學分析是什麼

2021-03-06 03:09:20 字數 3521 閱讀 4753

1樓:匿名使用者

數學分析(mathematical analysis)是數學專業的必修課程之一,基本內容是微積分,但是與微積分有很大的差別。

微積分學是微分學(differential calculus)和積分學(integral caculus)的統稱,英語簡稱calculus,意為計算,這是因為早期微積分主要用於天文、力學、幾何中的計算問題。後來人們也將微積分學稱為分析學(analysis),或稱無窮小分析,專指運用無窮小或無窮大等極限過程分析處理計算問題的學問。

早期的微積分,由於無法對無窮小概念作出令人信服的解釋,在很長的一段時間內得不到發展。柯西(cauchy)和後來的魏爾斯特拉斯(weierstrass)完善了作為理論基礎的極限理論,使微積分逐漸演變為邏輯嚴密的數學基礎學科,被稱為「mathematical analysis」,中文譯作「數學分析」。

數學分析的基礎是實數理論。實數系最重要的特徵是連續性,有了實數的連續性,才能討論極限,連續,微分和積分。正是在討論函式的各種極限運算的合法性的過程中,人們逐漸建立起嚴密的數學分析理論體系。

《數學分析》課程是一門面向數學類專業的基礎課。學好數學分析(和高等代數)是學好其他後繼數學課程如微分幾何,微分方程,複變函式,實變函式與泛函分析,計算方法,概率論與數理統計等課的必備的基礎。

作為數學系最重要的基礎課之一,數學科學的邏輯性和歷史繼承性決定了數學分析在數學科學中舉足輕重的地位,數學的許多新思想,新應用都源於這堅實的基礎。數學分析出於對微積分在理論體系上的嚴格化和精確化,從而確立了在整個自然科學中的基礎地位,並運用於自然科學的各個領域。同時,數學研究的主體是經過抽象後的物件,數學的思考方式有鮮明的特色,包括抽象化,邏輯推理,最優分析,符號運算等。

這些知識和能力的培養需要通過系統、紮實而嚴格的基礎教育來實現,數學分析課程正是其中最重要的一個環節。

我們立足於培養數學基礎紮實,知識面寬廣,具有創新意識、開拓精神和應用能力,符合新世紀要求的優秀人才。從人才培養的角度來講,一個學生能否學好數學,很大程度上決定於他進大學伊始能否將《數學分析》這門課真正學到手。

本課程的目標是通過系統的學習與嚴格的訓練,全面掌握數學分析的基本理論知識;培養嚴格的邏輯思維能力與推理論證能力;具備熟練的運算能力與技巧;提高建立數學模型,並應用微積分這一工具解決實際應用問題的能力。

微積分理論的產生離不開物理學,天文學,幾何學等學科的發展,微積分理論從其產生之日起就顯示了巨大的應用活力,所以在數學分析的教學中,應強化微積分與相鄰學科之間的聯絡,強調應用背景,充實理論的應用性內容。數學分析的教學除體現本課程嚴格的邏輯體系外,也要反映現代數學的發展趨勢,吸收和採用現代數學的思想觀點與先進的處理方法,提高學生的數學修養。 很多人都說數分很難,確實是這樣。

不過和高考數學的最後一題比起又相當的簡單了,我是說複雜程度相比起來的話。學好一門學科重要的還是思考和理解,特別是數分這種數學邏輯性思考很強的學科,當然很有勤奮的練習,我覺得如果一個一天只會捧著書上下課但很少翻書的人再聰明也會對它茫然,畢竟都沒學習過怎麼不難,但只要用心學,其實數分也就是門很基礎的課程,為以後很多數學專業學科打下基礎。 我推薦幾本書,你可以看看,推薦復旦陳傳璋的那本,陳紀修那本也還行,不過課後題目還是前一本好些。

最好別用什麼同濟版的微積分,估計連菜鳥都不怎麼看。 參考書,這是最重要的。

首推《吉米多維奇》,雖然這套書題目多,但有價值的題目可以說不是很多,至少可以壓縮到原來的1/3。有一本《數學分析例題選講》(3本),就是把這套書壓縮了一下,水平挺高的。還有吉米多維奇裡面的方法不是很好,盡信書不如無書當然不行,最好自己想想好的方法,這本書是專門為學習中等的同學看的,當然高手也可以參考參考。

再說《研究生入學考試指導(數學分析)》,山東科技出版社,書很難找,不過比吉米多維奇好得多,幾乎沒有一題不經典。全書300多道題,建議每題都看看,同等題目會比吉米多維奇簡單(甚至很簡單)。第六章有幾題很難,不可能考的。

這本書是為中等偏上的同學編的。

最後看看《數學分析中的證明方法與難題選解》,題目覆蓋面不是很全,不過解法很經典,比上面的都簡練的多。看完這本還不行的話說明你水平太高了,去編本教材吧!

因為本人水平不是很高,最多隻能做到這樣了。

2樓:匿名使用者

數學分析是數學系的專業基礎課,總共有三本書,和高數相比,數學分析有更多的證明和推導,包括的基本內容,和高數區別不是很大。數學分析作為基礎課,對於數學系的學生來說不難,對於非數學的同學來說可能會比較晦澀難懂。不過,學習數學分析課程能夠讓我們鍛煉出強大的數學思維能力。

3樓:小紅豆兒

大學課程中的數學分析是是數學專業的必修課程之一,基本內容是微積分.

《數學分析》課程是一門面向數學類專業的基礎課。學好數學分析(和高等代數)是學好其他後繼數學課程如微分幾何,微分方程,複變函式,實變函式與泛函分析,計算方法,概率論與數理統計等課的必備的基礎。

作為數學系最重要的基礎課之一,數學科學的邏輯性和歷史繼承性決定了數學分析在數學科學中舉足輕重的地位,數學的許多新思想,新應用都源於這堅實的基礎。數學分析出於對微積分在理論體系上的嚴格化和精確化,從而確立了在整個自然科學中的基礎地位,並運用於自然科學的各個領域。同時,數學研究的主體是經過抽象後的物件,數學的思考方式有鮮明的特色,包括抽象化,邏輯推理,最優分析,符號運算等。

這些知識和能力的培養需要通過系統、紮實而嚴格的基礎教育來實現,數學分析課程正是其中最重要的一個環節。

我們立足於培養數學基礎紮實,知識面寬廣,具有創新意識、開拓精神和應用能力,符合新世紀要求的優秀人才。從人才培養的角度來講,一個學生能否學好數學,很大程度上決定於他進大學伊始能否將《數學分析》這門課真正學到手。

4樓:匿名使用者

很難,難得我想哭,彆著急買吉米多維奇題集,課後習題能全做出來的就已經超厲害了,不謝

5樓:嗯額啊

入門難 數學分析是後邊所以分析類課程的基礎 如果你以後要從事科研 數學分析學的是否通透決定了你發表文章的高度 總而言之 剛開學學數學分析 可能比較懵 慢慢思維轉換過來了 就感覺好多了

大家是如何學習數學分析的,是大學課程,太難了~~

6樓:星魂黎鑭

數學分析和高等代數是數學專業的最基礎的課程,後繼很多課程都是跟他們有著密切回的聯絡。數答學分析主要研究的問題就是函式,函式的各種性質,比如連續性,可導性,可微性等等。在研究這些性質的時候,需要把握內在的聯絡。

比如是實數系的連續性定理,有5個,但是,他們都是在實質上是等價的。剛開始接觸數分的時候是覺得比較難,這個你不用擔心,大家都是這麼覺得的,但是等你慢慢學習了後面的內容之後,你就會有豁然開朗的感覺,一開始不懂的問題,有時候在不經意之間就明白了。這就是量變到質變的過程,在這個過程中,需要就是堅持。

不要覺得很難就不學了,那樣的話,你就真的比較難學好數分了。冷靜下來,一切都會變得簡單很多。。。

大學裡,數學系學生學的數學分析好難,請問有誰能傳授點學習經驗呢?剛學了確界原理,覺得好痛苦

7樓:牛奶說不好

學習數分辦法就是「常複習常預習」數分概念和定理多,證明難,容回易混淆。知識連答續性還是比較大,很多同學都是「學後面忘前面」積累到一定程度就聽不懂了。自己也沒有能力自學。

沒有預習上課也會跟不上的。勤練題最好

大學數學分析定積分問題求解,大學數學分析求定積分問題,幫忙求一下下面這個含級數定積分謝謝

個人來意見 數學分析就源是大的分成小的 分析或微bai分 小的累積成大的du 積分 zhi。手段就是極限。數dao學分析中沒有遞推思想。有的問題採用遞推的方式描述,但只是描述方式而已。例如 有理函式的不定積分,某些函式n次方的定積分等,某些數列的表述。班門弄斧 大學數學分析求定積分問題,幫忙求一下下...

數學分析題,數學分析題

設f x x。在baix x,x 1 上由拉du格朗日中值定理zhi 有 f x 1 f x x 1 x f dao 其中,x 內x 再設 容 x x x 1 x 1 成立。由 式,有 x 1 x 2 x x x 1 4 當x 0時,x x 1 x,x 1 4。又,x x 1 x x 1 2 x 1...

數學分析定積分,數學分析計算定積分

第一步,cos2x 1 sin2x替換,第二步,我跟瓦里斯公式,計算正弦高次方即可 現在沒筆,思路 把cos平方換成1減sin平方,就可以求出來了 數學分析計算定積分 這個直接按振幅的定義驗證就行了 對於某個閉區間上的有界函 數f,g,設m1 sup f,m1 inf f,m2 sup g,m2 i...