高等數學二重積分基礎題求大神詳細解答

2021-03-07 11:05:27 字數 1096 閱讀 8415

1樓:匿名使用者

^1. 積分割槽域關於y軸對稱,2x^3+3sinx/y 為x的奇函式,積分為0,則

原積分 i=∫∫7dxdy=7π(4-1)=21π.

2. 積分割槽域關於x軸對稱,cos(xy) 為y的偶函式;

積分割槽域關於y軸對稱,cos(xy) 為x的偶函式.

記d1為第一象限的四分之一圓,則

原積分 i = 4∫∫[e^(x^2+y^2)cos(xy)]dxdy

= 4∫<0,π/2>dt∫<0,r>[e^(r^2)cos(r^2*sintcost)]rdr,

所求極限即

lim4∫<0,π/2>dt∫<0,r>[e^(r^2)cos(r^2*sintcost)]rdr/(πr^2) (0/0型)

=lim4∫<0,π/2>dt[e^(r^2)cos(r^2*sintcost)]r/(2πr)

=4∫<0,π/2>dt[1/(2π)]=1.

2樓:渣與弱

=21π

可以拆成三項積分分別相加,前兩項積分都是關於x的奇函式,而且積分割槽域關於原點對稱,所以都為0,最後答案=7*π(4-1)=21π

高等數學二重積分基礎題,有沒有大佬幫助解答d?

3樓:匿名使用者

高數中二重積分主要是要確定合適的積分次序,具體解答如下

高等數學二重積分急求大神解答

4樓:匿名使用者

交換二重積分的次序最簡單的方法就是畫圖,一眼就能看清積分割槽域d

死盯著不等式看有時候很難解出來

5樓:匿名使用者

^|3.(1)原式=∫<0,1>(1/2)[(π-arcsiny)^2-(arcsiny)^2]dy

=(1/2)∫<0,1>(π^2-2πarcsiny)dy=(1/2)[π^2*y-2π[yarcsiny+√(1-y^2)]}|<0,1>

=(1/2)[π^2-2π(π/2-1)]=π。

6樓:基拉的禱告

詳細過程如圖rt所示……希望能幫到你解決你心中的問題

高數中二重積分,高等數學,二重積分

這是bai我的理解 二重積分 和二次du積分的區別二重zhi積分是有關面積的dao積分,二次積版分是兩次單變數積分。1當權f x,y 在有界閉區域內連續,那麼二重積分和二次積分相等。對開區域或無界區域這關係不衡成立。2可二次積分不一定能二重積分。如對 0,1 0,1 區域,對任意x 0,1 可定義一...

高數,二重積分極限問題,高等數學二重積分求極限

對一個變上限積分 a x f t dt做求導,應該把t變為x再乘上x的導數1,這道題裡u就是例子裡的t,x就是例子裡的x。高等數學 大學數學分析 二重積分基礎定義,如圖二重積分極限等式為何成立,求解 找找我發的圖,定積分定義和二重積分定義基本同理推出。只不過一個是二維平面畫格子,一個是三維立體畫方塊...

高等數學二重積分的一道題目,求高手

dxdy 版 dxdy dxdy 2 故 原式權 a b 2選d 高等數學,一道二重積分求體積的題?詳細過程如圖rt.希望能幫到你解決問題 高等數學中二重積分的一道考研題目 就是說將f x a,y b,z c 的曲面積分化成二重積分時得到的公式與你手寫問題的上兩行的公式是相同的 當然要將u,v換成x...