把極限limn1n1把極限limn1n11n21nn表示為定積分

2021-03-07 12:54:31 字數 1876 閱讀 9914

1樓:drar_迪麗熱巴

函式f(x)=1/(1+x).

用分點將區間[0,1]平均分成n份,分點是

x[k]=k/n,k=1,2,...,n.

利用定積分的定義,和式

∑當n->∞時的極限等於定積分

∫而f(x[k])*(1/n)=1/(n+k),通項相等,也就是說你的式子等於上面的和式。

於是lim[1/(n+1)+1/(n+2)+1/(n+3)+……1/(n+n),n->∞]

=∫=∫

=ln(1+x)|[0,1]

=ln(1+1)-ln(1+0)

=ln2

「極限」是數學中的分支——微積分的基礎概念,廣義的「極限」是指「無限靠近而永遠不能到達」的意思。數學中的「極限」指:某一個函式中的某一個變數,此變數在變大(或者變小)的永遠變化的過程中,逐漸向某一個確定的數值a不斷地逼近而「永遠不能夠重合。

用極限思想解決問題的一般步驟可概括為:

對於被考察的未知量,先設法正確地構思一個與它的變化有關的另外一個變數,確認此變數通過無限變化過程的』影響『趨勢性結果就是非常精密的約等於所求的未知量;用極限原理就可以計算得到被考察的未知量的結果。

極限思想是微積分的基本思想,是數學分析中的一系列重要概念,如函式的連續性、導數(為0得到極大值)以及定積分等等都是藉助於極限來定義的。如果要問:「數學分析是一門什麼學科?

」那麼可以概括地說:「數學分析就是用極限思想來研究函式的一門學科,並且計算結果誤差小到難於想像,因此可以忽略不計。

2樓:116貝貝愛

結果為:ln2

解題過程如下:

函式f(x)=1/(1+x)

用分點將區間[0,1]平均分成n份,分點是 x[k]=k/n,k=1,2,...,n

利用定積分的定義,和式 ∑

當n->∞時的極限等於定積分 ∫

而f(x[k])*(1/n)=1/(n+k),通項相等,也就是說你的式子等於上面的和式

lim[1/(n+1) +1/(n+2)+1/(n+3)+……1/(n+n),n->∞]

=∫ =∫

=ln(1+x)|[0,1]

=ln(1+1)-ln(1+0)

=ln2

求函式積分的方法:

設f(x)是函式f(x)的一個原函式,我們把函式f(x)的所有原函式f(x)+c(c為任意常數)叫做函式f(x)的不定積分,記作,即∫f(x)dx=f(x)+c。

其中∫叫做積分號,f(x)叫做被積函式,x叫做積分變數,f(x)dx叫做被積式,c叫做積分常數,求已知函式不定積分的過程叫做對這個函式進行積分。

積分是微積分學與數學分析裡的一個核心概念。通常分為定積分和不定積分兩種。直觀地說,對於一個給定的實函式f(x),在區間[a,b]上的定積分記為:

若f(x)在[a,b]上恆為正,可以將定積分理解為在oxy座標平面上,由曲線(x,f(x))、直線x=a、x=b以及x軸圍成的面積值(一種確定的實數值)。

積分公式主要有如下幾類:

含ax+b的積分、含√(a+bx)的積分、含有x^2±α^2的積分、含有ax^2+b(a>0)的積分、含有√(a2+x^2) (a>0)的積分、含有√(a^2-x^2) (a>0)的積分。

含有√(|a|x^2+bx+c) (a≠0)的積分、含有三角函式的積分、含有反三角函式的積分、含有指數函式的積分、含有對數函式的積分、含有雙曲函式的積分。

3樓:

看表示式分母為n+i形式,要表示為定積分,一般要提出因式1/n,所以可以化成

lim(n→∞)[1/(1+1/n)+1/(1+2/n)+……+1/(1+1)]/n

=∫[0,1] [1/(1+x)]dx

=ln2

4樓:

∫(n,∞) -1/(n+1)^2 dn

高數求極限limn趨近於無窮nn1n

轉化為定積分來計算。lim n n n 2 1 2 n n 2 2 2 n n 2 n 2 lim n n i 1 n 1 n 2 i 2 lim n 1 n i 1 n 1 1 i n 2 0 1 dx 1 x 2 arctanx 0 1 4 高等數學求極限,lim,n趨近於無窮,1 n2 n 1...

求(2n 1)2 n的極限, n 2n 1 n求極限

用羅必塔法則 不知道你學過沒有,可以查閱有關知識 2n 1 2 2 n 2 n 1 2 n 1 表示2的 n 1 次方 n 2 n 1 n 2 n 1 又2為定值,因此 2 n 2 n 1 0 lim 2n 1 2 0 n lim x 2x 1 2 x lim x 2 2 x ln2 0再根據函式列...

n 1 k n k求極限 n趨向無窮大

k為正整數 的條件?若是,分享一種解法。用c k 1,i i 0,1,k 1 表示從k 1中取出i個數的組合數。利用自然數1到n的k次方求和公式的遞推式n k 1 n 1 k 1 c k 1,1 n k c k 1,2 n k 1 c k 1,3 n k 2 1 k 1 對其求和,整理有n k 1 ...