1樓:綱吉丶
有如下幾種:
第一種:運用因式分解的方法,而因式分解的方法有:(1)十字相乘法(又包括二次項係數為1的和二次項係數不為1,但又不是0的),(2)公式法:
(包括完全平方公式,平方差公式,).(3)提取公因式
例1:x^2-4x+3=0
本題運用因式分解法中的十字相乘法,原方程分解為(x-3)(x-1)=0 ,可得出x=3或1。
例2:x^2-8x+16=0
本題運用因式分解法中的完全平方公式,原方程分解為(x-4)^2=0 可以得出x1=4 x2=4(注意:碰到此類問題,一定要寫x1=x2=某個數,不能只寫x=某個數,因為一元二次方程一定有兩個根,兩個根可以相同,也可以不同)
例3:x^2-9=0
本題運用因式分解法中的平方差公式,原方程分解為(x-3)(x+3)=0 ,可以得出x1=3,x2=-3。
例4:x^2-5x=0
本題運用因式分解法中的提取公因式法來解,原方程分解為x(x-5)=0 ,可以得出x1=0 ,x2=5
第二種方法是配方法,比較複雜,下面舉一個例來說明怎樣用配方法來解一元二次方程:
x^2+2x-3=0
第一步:先在x^2+2x後加一項常數項,使之能成為一項完全平方式,那麼根據題目,我們可以得知應該加一個1這樣就變成了(x+1)^2。
第二步:原式是x^2+2x-3,而(x+1)^2=x^2+2x+1,兩個葵花子對比之後發現要在常數項後面減去4,才會等於原式,所以最後用配方法後得到的式子為(x+1)^2-4=0,最後可解方程。
還有一種方法就是開平方法,例如:x^2=121,那麼x1=11,x2=-11。
最後如果用了上面所有的方法都無法解方程,那就只能像樓上所說的用求根公式了。
定理就是韋達定理,還有根的判別式,韋達定理就是一元二方程ax^2+bx+c=0(a不等於0)二根之和就是-b/a,兩根之積就是c/a
舉例:x^2-4x+3=0 兩根之和就是-(-4/1)=4,兩根之積就是3/1=3,(你可以自己解一下,看看是否正確)。
因式分解法:把方程變形為一邊是零,把另一邊的二次三項式分解成兩個一次因式的積的形式,讓
兩個一次因式分別等於零,得到兩個一元一次方程,解這兩個一元一次方程所得到的根,就是原方程的兩個
根。這種解一元二次方程的方法叫做因式分解法。
例4.用因式分解法解下列方程:
(1) (x+3)(x-6)=-8 (2) 2x2+3x=0
(3) 6x2+5x-50=0 (選學) (4)x2-2( + )x+4=0 (選學)
(1)解:(x+3)(x-6)=-8 化簡整理得
x2-3x-10=0 (方程左邊為二次三項式,右邊為零)
(x-5)(x+2)=0 (方程左邊分解因式)
∴x-5=0或x+2=0 (轉化成兩個一元一次方程)
∴x1=5,x2=-2是原方程的解。
(2)解:2x2+3x=0
x(2x+3)=0 (用提公因式法將方程左邊分解因式)
∴x=0或2x+3=0 (轉化成兩個一元一次方程)
∴x1=0,x2=-是原方程的解。
注意:有些同學做這種題目時容易丟掉x=0這個解,應記住一元二次方程有兩個解。
(3)解:6x2+5x-50=0
(2x-5)(3x+10)=0 (十字相乘分解因式時要特別注意符號不要出錯)
∴2x-5=0或3x+10=0
∴x1=, x2=- 是原方程的解。
(4)解:x2-2(+ )x+4 =0 (∵4 可分解為2
2樓:沫珺單
x(x-1)=0
x=1或x=o
一元二次方程x的平方減2x等於0的解為
3樓:小兔誰家的
x^2-2x=0
x(x-2)=0
x=0或x=2
若x0是一元二次方程,ax2bxc0a0的根,則
把x0代入方程ax2 bx c 0中得ax02 bx0 c,2ax0 b 2 4a2x0 2 4abx0 b2,版2ax0 b 2 4a ax0 2 bx0 b2 4ac b2 m 故選權b.若x 1是一元二次方程ax2 bx c o a o 的根,則判別式 b2 4ac和完全平方式m 2a b 2...
ab是一元二次方程x的平方加x減2019等於0的兩個實數根,求a的平方加2a加b等於多少
a,b是一元抄二次方程 襲x 2 x 2014 0的兩個實數根,a 2 a 2014 0 a 2 a 2014 同時由韋達定理可知a b 1 則a 2 2a b a 2 a a b 2014 1 2013 a copyb是x x 2014 0的兩個實數bai根 a a 2014 0 a a 2014...
關於x的一元二次方程x平方 2x 2m 0有兩個不相等的實數根
a 1,b 2,c 2m,b的平方 4ac 4 8m,因為方程有兩個不相等的實數根,所以4 8m 0,m 二分之一 a 1,b 2m 1,c m2 1 b2 4ac 2m 1 2 4 m2 1 4m 5 關於x的一元二次方程x2 2m 1 x m2 1 0有兩個不相等的實數根,4m 5 0 m 54...