1樓:李加彧
解:(1)當[bai-(2k+1)]的平
方-4k(k+3)=0時,有兩個相du等的實數根。zhi
解得:k=1
(dao2)當[-(2k+1)]的平方-4k(k+3)>0時,有兩版個不相等的實權數根
解得:k<1
(3)當[-(2k+1)]的平方-4k(k+3)<0時,沒有實數根解得:k> 1
2樓:p瀟湘夜雨
1.△≥b^2-4ac
2..△>b^2-4ac
3.這時候需要討論k是否等於零啦,當k=0時,x=3,本身即為實根,當k8=0時,和第一問一樣
3樓:超級霸氣
有兩個實數根判別式=[-(2k-1)]²-4k²>=0kk²-4k+1-4k²>=0k<=1/4
4樓:匿名使用者
1.△≥b^2-4ac
2..△>b^2-4ac
3.與第一問一樣
33.關於 x 的一元二次方程 x2﹣(k+3)x+2k+2=0若方程有一根小於 1,求 k 的取值範圍
5樓:瀛洲煙雨
分析 :
(1)根據方程的係數結合根的判別式,可得△=(k-1)2≥0,由此可證出方程專總有兩個實數根;
(2)利屬用分解因式法解一元二次方程,可得出x1=2、x2=k+1,根據方程有一根小於1,即可得出關於k的一元一次不等式,解之即可得出k的取值範圍.
解答:(1)證明:∵在方程x2-(k+3)x+2k+2=0中,△=[-(k+3)]2-4×1×(2k+2)=k2-2k+1=(k-1)2≥0,
∴方程總有兩個實數根.
(2)解:∵x2-(k+3)x+2k+2=(x-2)(x-k-1)=0,
∴x1=2,x2=k+1.
∵方程有一根小於1,
∴k+1<1,解得:k<0,
∴k的取值範圍為k<0.
本題考查了根的判別式、因式分解法解一元二次方程以及解一元一次不等式,解題的關鍵是:
(1)牢記「當△≥0時,方程有兩個實數根」;
(2)利用因式分解法解一元二次方程結合方程一根小於1,找出關於k的一元一次不等式.
6樓:匿名使用者
(bai1)
△=(k+3)²-4(du2k+2)=k²+6k+9-8k-8=k²-2k+1=(k-1)²≥
zhi0
所以方程總有兩個實數根
(2)(x-k)(x-k-1)=0
x1=k,
daox2=k+1
若方版程只有一個根權小於1,則
k<1且k+1>1,則0 若方程兩個根都小於1,則 k+1<1,則k<0 7樓:匿名使用者 ^^(1) x^2 -(k+3)x+2k+2=0 δbai= (k+3)^2 - 4(2k+2)=k^2-2k+1 =(k-1)^2 >0(2)若方du程有一zhi根小於dao 1,求 k 的取版值範圍權x^2 -(k+3)x+2k+2=0 (x- (k+1))(x-2) = 0 x=2 or k+1 k+1 <1 k<0 8樓:海上漂流 (1)用bai根的判別式:b²-4ac=(k+3)²-4(2k+2)=(k-1)du²≥0 所以方程zhi總有兩個實數根dao; (2)由於方 程總有一專根為 屬2,另一根為k+1(可用求根公式) ∴必有k+1<1, k<0 9樓:輭詆屍 設f(x)=x^2+(k-1)x+1 則f(x)的影象開口向上 要使f(x)=0一根大於2,一根小於2 則f(2)0得 k>3或k 把式子分解,這裡u2用x來代替,v2用y來代替得x x平方 xy y xy y平方 6 0合併一下 x平方 2xy y平方 x y 6 x y 平方 x y 6 0 再把x y看成是一個整體z x y 解一元二次方程 z平方 z 6 0 z 3 z 2 0 z 3或z 2 即u2 v2 3或 2 解... b b 2 4ac x1,x2 2ab 2 4ac 0 複數解 可以去那看看,挺明白的 有例題 應該用萬能公式解的。1 一元二次方程的解法有四種 1 直接開平方法 2 因式分解法 3 配方法 4 公式法 要根據方程的特點靈活選擇方法,其中公式法是通法,可以解任何一個一元二次方程 2 一元二次方程根的... 設ax 2 bx c 0 a 0 b a c b 2 4ac a c 2 0 x1 b 根號下b 2 4ac 2ax2 b 根號下b 2 4ac 2a當a c 0時 x1 c a,x2 1當a c 0時 x1 1,x2 c a當a c 0時 x1 x2 b 2a 1所以一個一元二次方程的一次項係數等...一元二次方程
一元二次方程如何解,一元二次方程詳細的解法,越相信越好。
一元二次方程求證 如果一元二次方程的一次項係數等於二次