收斂數列極限的唯一性證明問題,收斂數列的極限的唯一性證明,詳細過程

2021-03-03 21:18:27 字數 2017 閱讀 5702

1樓:堂國英初裳

傳個**上來抄啊

先說一個數列極限襲的一個性質bai

有數列極限的定義知

若果dua(n)

收斂數列的 極限的唯一性證明,詳細過程

2樓:匿名使用者

證明:假設

數列an收斂於實數a和實數b,其中a≠b,不妨假設a存在n>0,使得對於任意的n≥n,總有

|an-a||a-b|/2對於任意的n≥n成立。

因此存在一個e'=|a-b|/2>0,使得對於任意的n'>0,總會有更大的n''>n且n>n',使得

對於任意的n≥n'',總是不滿足|an-b|

根據數列極限的e-n定義法,數列an不收斂於b。

歸謬完畢。

3樓:wuli平

收斂數列必有界

因為e是任意的。如果我們假設a,b不相等,即a與b的差值不為0,則我們設|a-b|=t,(t不等於0)則我們一定能找到一個e滿足0

證明收斂數列極限的唯一性(高手幫幫菜鳥吧)

4樓:匿名使用者

其它的也可以,只要能說明問題就行,在證明唯一性中,ε=(b-a)/2或更小的數,如ε=(b-a)/4之類的都是可以證出來的。

希望可以幫到你,不明白可以追問,如果解決了問題,請點下面的"選為滿意回答"按鈕,謝謝。

高數收斂數列極限唯一性證明題

5樓:馬小跳啊啊

設函式f(x)的定義域du為d,數zhi集x⊆d如果存在數k1使得 f(x)≤k1對任意x∈x都成dao立則稱函式f(x)在x上有上界內。而k設函式f(x)的定義域容為d,數集x⊆d如果存在數k1使得 f(x)≤k11稱為函式f(x)在x上的一個上界。 此外,如果存在數字k2使得 f(x)≥k2對任意x∈x都成立,則稱函式f(x)在x上有下界,而k2稱為函式f(x)在x上的一個下界。

如果存在正數m,使得 |f(x)|≤m 對任一x∈x都成立,則稱函式在x上有界。如果這樣的m不存在就稱函式f(x)在x上無界;這也就是說,無論對於任何正數m,總存在x1屬於x,使得|f(x1)|>m,那麼函式f(x)在x上無界。

這是函式的有界性。證明過程如下:

收斂數列的性質極限的唯一性證明沒看懂?

6樓:

假設數列an收斂於實數a和實數b,其中a≠b,不妨假設a那麼對於任給的e,總存在n>0,使得對於任意的n≥n,總有

|an-a||a-b|/2對於任意的n≥n成立。

因此存在一個e'=|a-b|/2>0,使得對於任意的n'>0,總會有更大的n''>n且n>n',使得

對於任意的n≥n'',總是不滿足|an-b|

根據數列極限的e-n定義法,數列an不收斂於b。

在證明收斂數列極限的唯一性時,反證法證明,需不需要

7樓:du基咪

傳個**上來啊

先說一個數列極限的一個性質

有數列極限的定義知

若果a(n)當n趨無窮時 a(n)=a

說明 對於任意給定的e(e>0) 存在n 當n>n時 絕對值(a(n)-a)

如何證明「收斂數列的極限是唯一的」?

8樓:素顏以對

證明如下:

設lim xn = a,lim xn = b當n > n1,|xn - a| < e

當n > n2,|xn - b| < e

取n = max ,

則當n > n時有

|a-b|=|(xn - b)-(xn - a)|收斂數列定義:設有數列xn , 若存在m>0,使得一切自然數n,恆有|xn|。

收斂數列的性質:

如果數列收斂,那麼它的極限唯一;

如果數列收斂,那麼數列一定有界;

保號性;

與子數列的關係一致.發散的數列有可能有收斂的子數列。

數列極限問題,數列極限的問題

既然設了xk x k 1 那麼前面一開始又說了x1.x2 0,那麼xk 0不是很明顯的嗎?這有什麼問題 例如an 8 n,bn n n 1 當n 8時,才成立an 解答的第一行的最後,就是證明數列每項都為正數,因此分母 1 1 就是正數了。數列單調遞增,最小的x1等於2,xn恆大於2,所以分別加上1...

收斂數列保號性證明具體過程謝,收斂數列的保號性,怎麼證明

設lim xn a 0,下證存在n,當n n時有xn 0 證明 取 a 2,存在n,當n n時,有 xn a a 2 0,證畢。希望可以幫到你,不明白可以追問,如果解決了問題,請點下面的 選為滿意回答 按鈕,謝謝。收斂數列的保號性,怎麼證明 定理 假設數列收斂於a 1,若有正整數n,使得當n n時a...

關於數列極限的問題,急,關於數列極限的定義

呃.首先說bai下.你用詞有問題 有界du是指有上界和有下 zhi界.有極限的話可以使dao單調增有上界或是單專調減有下屬界 有極限不一定有界哦 首先 那個函式單調減的.這個可以用數規證明 做商證明.具體我就不證明了.其次此函式一定是大於0的 所以有下界 設其極限值為b由定理得b 1 1 n b 1...